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1. Introduction
Molecular aggregates are abundant in nature; they form

spontaneously in concentrated solutions and on surfaces and
can be synthesized by supramolecular chemistry techniques.1-3

Assemblies of chromophores play important roles in many
biological processes such as light-harvesting and primary
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charge-separation in photosynthesis.4 Aggregates come in
various types of structures: one-dimensional strands (H and
J aggregates),2,5 two-dimensional layers,6-8 circular com-
plexes,9 cylindrical nanotubes, multiwall cylinders and
supercylinders,10-12 branched fractal structures, dendrimers,
and disordered globular complexes.13 They also can be
fabricated on substrates by “dip-pen” technology.14 Figure
1 presents some typical structures of pigment-protein
complexes found in natural light-harvesting membranes.
These are made of chlorophyll and carotenoid chromophores
held together by proteins.4,9,15,16

We consider aggregates made out of chromophores with
nonoverlapping charge distributions where intermolecular
couplings are purely electrostatic. The optical excitations of
such complexes are known as Frenkel excitons.17-20 Ap-

plications of molecular exciton theory to dimers4,21-24 show
some key features shared by larger complexes. Their
absorption spectra have two bands, whose intensities and
DaVydoV splitting are related to the intermolecular interaction
strength and the relative orientation.

Excitons in large aggregates can be delocalized across
many chromophores and may show coherent or incoherent
energy transfer. The optical absorption, time-resolved fluo-
rescence, and pump-probe spectra in strongly coupled linear
J-aggregates have been extensively studied.2,5,18,25-29 These
spectra contain signatures of cooperative optical response:
the absorption splits into several Davydov sub-bands and is
shifted compared to the monomer. Additionally, the absorp-
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tion and fluorescence bands are narrower in strongly coupled
J aggregates because of motional and exchange narrowing
that dynamically average these properties over the inhomo-
geneous distribution of energies.30 Aggregates may show
cooperative spontaneous emission, superradiance, which
results in shorter radiative lifetime than the monomer.31-36

Large molecular aggregates may show several optical
absorption bands12 whose shapes and linewidths depend on
their size and geometry. They undergo elaborate multistep
energy-relaxation pathways that can be monitored by time-

resolved techniques. These pathways are optimized in natural
photosynthetic antennas to harvest light with high speed and
efficiency.4,37-41 Exciton energy and charge transport, as well
as relaxation pathways, are of fundamental interest. Under-
standing their mechanisms may be used toward the develop-
ment of efficient, inexpensive substitutes for semiconductor
devices.

Nonlinear optical four-wave mixing (FWM) techniques
have long been used for probing inter- and intramolecular
interactions, excitation energies, vibrational relaxation, and
charge-transferpathwaysinmolecularaggregates.Pump-probe,
transient gratings, photon-echo, and time-resolved fluores-
cence were applied to study excited states, their interactions
with the environment, and relaxation pathways.4,42-52

Optical pulse sequences can be designed for disentangling
the spectral features of the coherent nonlinear optical signals.
Multidimensional correlation spectroscopy has been widely
used in NMR to study the structure and microsecond
dynamics of complex molecules.53 It has been proposed to
extend these techniques to the femtosecond regime by using
optical (Raman) or infrared (IR) lasers tuned in resonance
with vibrations.54-56 The connection with NMR was
established.57-59 Multidimensional infrared spectroscopy
monitors hydrogen-bonding network and dynamics, protein
structures, and their fluctuations.60-67 Development of these
IR techniques was reviewed recently67 and will not be
repeated here.

Multidimensional techniques allow one to study molecular
excitons in the visible region and reveal couplings and
relaxation pathways. These applications were proposed in
refs 68-70 and demonstrated experimentally in
molecules40,41,65,71,72 and semiconductor quantum wells.73-75

Laser phase-locking during excitation and detection is
required in these experiments, which measure the signal
electric field (both amplitude and phase), not just its intensity.
All excitation pulses as well as the detected signal must have
a well-defined phase. This review covers multidimensional
techniques carried out by applying four femtosecond pulses,
as shown in Figure 2, and controlling the three time intervals,
t1, t2, and t3, between them. In practice the t3 information is
usually obtained interferometrically in one shot rather than
by scanning t3. Spectral dispersion of the signal with the local
oscillator gives the Fourier transform with respect to t3. Two-
dimensional (2D) spectra are displayed by a Fourier trans-
form of these signals with respect to a pair of these time
variables. NMR signals do not depend on the wavevectors
since the sample is much smaller than the wavelengths of
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Figure 1. Some biophysical photosynthetic systems: FMO )
Fenna-Matthews-Olson protein, a trimer, each unit has 7 chro-
mophores; LH2 ) light-harvesting complex 2, double-ring structure
of chromophores, 27 chromophores; PS1 ) photosystem 1, a
complex of 96 chromophores; BChla ) bacteriochlorophyll a, a
key chromophore in photosynthetic antennae.

Figure 2. Coherent third-order nonlinear optical experiment. The
four laser pulses are ordered in time; the signal is generated in the
phase-matching direction k4. Data processing of time-domain signals
and their parametric dependence on the three delays t1, t2, and t3

generate multidimensional spectrograms.
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the transitions. Different Liouville space pathways are then
separated by combining measurements carried out with
different phases of the pulses, rather than by detecting signals
in different directions. This phase-cycling technique, which
provides the same information as heterodyne detection,57-59

has been first used in the optical regime using a collinear
pulse configuration.76 Direct heterodyne detection by wave-
vector selection was reported in ref 77. By controlling the
time-ordering of incoming pulses and the signal wavevector
(ks), we obtain a wealth of spectroscopic information about
the system. Multidimensional techniques can target a
broad variety of physical phenomena. Visible pulses probe
electronically excited-state dynamical events: ultrafast in-
tramolecular and intermolecular dephasing and relaxation,
energy transport, charge photogeneration, and recombina-
tion.76,77 2D techniques can also eliminate certain types
of inhomogeneous broadenings, show two-exciton reso-
nances, and reveal couplings and correlations between
chromophores.24,40,41,45,65,70,72,78-81 Extensions to the UV82-84

may target backbone transitions of proteins and DNA. In
the future, X-ray attosecond techniques may reveal electronic
wavepackets with high temporal and spatial resolution.85-87

Multidimensional techniques could further utilize the
vector nature of the optical field by selecting specific
polarization configurations. These may lead to pulse se-
quences sensitive to structural chirality (hereafter denoted
chirality induced, CI)79,88-92 These are 2D extensions of the
1D circular dichroism spectroscopy (CD).93 CI optical signals
can be employed to probe specific correlations and couplings
of chromophores. These have been demonstrated for probing
protein structure in the infrared.94 Numerical sensitivity
analysis algorithms and pulse-shaping and coherent-control
techniques can help dissect and analyze coherent spectra and
simplify congested signals.95-97

This review surveys the broad arsenal of theoretical tech-
niques developed toward the description of nonlinear optical
signals in molecular complexes. By treating the system-field
coupling perturbatively, the signals are expressed in terms of
response functions, which allow a systematic classification and
interpretation of the various possible signals.

The optical properties of molecular aggregates may be
described by the Frenkel exciton model. This model has been
first applied to molecular crystals17,98 and subsequently
extended to aggregates.4,5,27-29,99 The system is partitioned
into units (chromophores) with nonoverlapping charge
distributions; electron exchange between these units is
neglected. The direct product of eigenstates of isolated
chromophores forms a convenient basis set for the global
excited states. In the Heitler-London approximation, the
aggregate ground state is given by the product of ground
states of all chromophores.17,99 Single-exciton states are
formed by promoting one chromophore to its excited state,
keeping all others in their ground state. Their number is equal
to the number N of chromophores. Double- and higher-
excited states are created similarly. The response is formu-
lated in Liouville space in terms of the system’s density
matrix, which allows one to incorporate energy dissipation
due to interaction with the environment.52

The methods used for computing the optical response of
aggregates may be broadly classified into two types.100 In
the supermolecule or Sum Over States (SOS) approach, the
response function is expanded in the global eigenstates.
Optical spectra are interpreted in terms of transitions between
these states. Feynman diagrams, which describe the evolution

of the molecular density matrix (LiouVille space pathways,
LSP), are the key tool in the analysis.52 These provide a direct
look at the relevant dynamics at each time interval between
interactions with the fields. The signals are interpreted in
terms of the relevant density matrix elements of the super-
molecule and the sequence of transitions between eigenstates.

The LSP can be divided into two groups, depending on
whether the density matrix during the second interval t2 is
in a diagonal state (populations) or off diagonal (coher-
ences).81 These groups have symmetry properties associated
with permutations of pulse-polarization configurations that
lead to distinct signatures in the multidimensional spectrum.

The necessary calculations of excited states make the
supermolecule approach computationally expensive. Calcu-
lating the global eigenstates is not always feasible. Moreover,
sums over states do not offer a simple physical picture when
many states are involved.

In the alternative quasiparticle (QP) description, the
aggregates are viewed as coupled, localized electronic
oscillators. Two-exciton eigenstates are never calculated
explicitly; instead, two-exciton resonances are obtained via
exciton scattering and calculated using the nonlinear exciton
equations (NEE).68,69,101-107 Two-exciton propagators are
calculated using the QP scattering matrix by solving the
Bethe Salpeter equation. The lower computational cost,
stemming from the more favorable scaling with size, makes
this approach particularly suitable to large aggregates. The
dominant contributions to the scattering matrix can be
identified a priori by examining the exciton overlaps in real
space, providing an efficient truncation strategy.

The spectral lineshapes of 2D signals contain signatures
of interactions with phonons, vibrations, and the solvent.
Slow and static fluctuations may be treated by statistical
averaging. Fast fluctuations can be easily incorporated
through population relaxation and dephasing rates. The
intermediate fluctuation-time regime requires more careful
attention. Many techniques exist for the modeling of quantum
dissipative dynamics.108-111 These treat the coupling of
excitons to a bath at different levels of sophistication. In the
simplest scheme, bath fluctuations are assumed to be fast, and
second-order perturbation theory for the coupling is used to
derive a Pauli master equation in the Markovian limit. Dephas-
ing and energy-transfer processes enter as simple exponential
decays. When exciton transport is neglected, energy (diagonal)
fluctuations coming from a bath with Gaussian statistics can
be exactly incorporated in the response functions using the
cumulant expansion for Gaussian fluctuations (CGF).42,43,100,112

Exciton transport may be approximately incorporated into the
CGF.24 A more detailed (and computationally expensive)
approach is based on the stochastic Liouville equations
(SLE), which explicitly include collective bath coordinates
in the description.113 The SLE have been used to describe
the signatures of chemical-exchange kinetics in coherent 2D
signals.

The quasi-particle description of the Frenkel-exciton model
is formally similar to that of Wannier excitons in multiband
tight-binding models of semiconductors.108,114-116 The number
of variables is, however, different: since electrons and holes
in the Frenkel-exciton model are tightly bound, the number
of single-exciton variables coincides with the number N of
sites; in contrast, the holes and electrons of Wannier excitons
are loosely bound, and the number of single-exciton variables
scales as ∼N2. This unfavorable scaling is more severe for
double-exciton states (∼N2 for Frenkel and ∼N4 for Wan-
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nier). Periodic infinite systems of Frenkel and Wannier
excitons may be treated analytically, making use of trans-
lational invariance.

Several approaches for computing response functions and
multidimensional optical signals are presented in this review.
Closed expressions for the signals are derived based on both
the QP representation and the supermolecule approach. We
use Markovian limit with respect to bath fluctuations in the
QP representation. Higher-level CGF and SLE approaches
are described within the supermolecule approach. The
semiclassical treatment of the molecular coupling with the
radiation field whereby the classical radiation field interacts
with the quantum exciton system.117 Applications to the
Fenna-Matthews-Olson (FMO) photosynthetic complex
made of seven coupled bacteriochlorophyll molecules il-
lustrate the various levels of theory.

Section 2 introduces a simple multilevel model system.
The response functions are derived in section 3. Section 4
develops the density-matrix formalism and derives the
response functions for dissipative quantum systems. The
response function theory is connected with experimental
heterodyne-detected signals in section 5. Section 6 develops
a microscopic model for excitonic aggregates in the quasi-
particle representation. In section 7, we derive response
functions for 2D signals based on the quasi-particle approach.
Different models of system-bath coupling are analyzed.
Exciton relaxation and dephasing rates are calculated in
section 8, and section 9 provides closed expressions for
multidimensional signals that include exciton population
transport. Section 10 presents various applications of the
quasi-particle theory to the FMO complex. In Section 11,
we revisit the supermolecule approach to include slow bath
fluctuations and exciton transport. In section 12, we describe
a stochastically modulated multilevel system by including
bath coordinates explicitly. Spectral line-shape parameters
are obtained by solving the stochastic Liouville equations
(SLE). Section 13 describes the response functions of an
isotropic ensemble of molecular complexes (solutions,
liquids). The response functions of the previous sections are
extended by orientational averaging going beyond the dipole
approximation to include first-order contributions in the
optical wavevector. Chirality-induced and nonchiral signals
are compared. Section 14 shows how coherent control pulse-
shaping algorithms can be used to simplify 2D signals.
General discussion and future directions are outlined in
section 15.

Most mathematical background and technical details are
given in the appendices. Linear optical signals are described
in Appendix A. Appendix B describes different modes of
signal detection of nonlinear signals. Appendix C provides
the relation between a system of coupled two-level oscillators
(hard-core bosons) and boson quasi-particles. In Appendix
D, we present complete expressions for the response function
for the model introduced in section 6. These complement
the expressions of section 9. In Appendix E, we describe
single- and double-exciton coherent propagation within the
QP representation and introduce the scattering matrix.
Appendix F derives exciton dephasing and transport rates
in the real space representation. The final expressions for
the system relaxation rates in terms of the bath spectral
density are given in Appendix G. Exciton scattering in
nonbosonic systems is described in Appendix H. Appendix
I generalizes the quasi-particle description to infinite periodic
systems. In Appendix J, we give expressions for the doorway

and window functions using cumulant expansion technique
for the supermolecule approach. Some quantum correlation
functions used in section 11.3 are defined in Appendix K.
Appendix L presents closed expressions for orientationally
averaged signals.

2. Supermolecule Approach; Coherent Optical
Response of Multilevel Systems

Conceptually, the simplest approach for describing and
analyzing the optical response of a molecular aggregate is
to view it as a supermolecule, expand the response in its
global eigenstates, and add phenomenological relaxation
rates. This level of theory will be described in this section.
In the coming sections, we shall rederive and generalize these
results using microscopic models for the bath. The alterna-
tive, quasi-particle approach developed in section 6 offers
many computational advantages and often provides a simpler
physical picture for the response. The supermolecule and
quasiparticle approaches will be compared.

When viewed as a supermolecule, the aggregate is a
multilevel quantum system described by the Hamiltonian,52

Ĥ) Ĥ0 + Ĥ′(t), (1)

where

Ĥ0 )∑
a

pεa|a〉 〈 a|. (2)

Here, pεa is the energy of state a and Ĥ′ represents the dipole
interaction with the external optical electric field E,

Ĥ′(t))-µ̂ ·E(r, t), (3)

where r is the position of the molecule and

µ̂)∑
ab

µab|a〉 〈 b| (4)

is the dipole operator. µab ) ∑RqR〈a|rR|b〉 is the transition
dipole between states a and b where R runs over molecular
charges qR (electrons and nuclei) with coordinates rR, relative
to the center of charge.

The quantum state of an ensemble of optically driven
aggregates is described by the density matrix:

F̂ )∑
ab

Fab|a〉 〈 b|. (5)

The diagonal elements represent populations of various
states, while off-diagonal elements, coherences, carry phase
information.

The density matrix satisfies the Liouville-von Neumann
equation,

ip
dF̂
dt

) LF̂ . (6)

Here L, the Liouville superoperator, is given by the com-
mutator, with the Hamiltonian LF̂ ) [Ĥ, F̂]. Similar to eq 1,
we partition the Liouville operator as

L) L0 + L
′(t), (7)

where L0 represents the isolated system and L′F̂ ) [Ĥ′, F̂] is
the interaction with the external field.

The retarded Green’s function (forward propagator) de-
scribes the free evolution of the molecular density matrix
between the interaction events. Setting L′ ) 0, we get
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F̂(0)(t))G(t)F̂(0)) θ(t) exp(- i
p

Ĥ0t)F̂(0) exp(+ i
p

Ĥ0t),
(8)

where θ(t) is the Heavyside step-function, defined by θ(t)
) ∫-∞

t dτ δ(τ). The density matrix of the driven system (eq
6) can be calculated perturbatively in L′ by iterative
integration of eqs 6 and 7. This yields52

F̂(t))G(t)F̂(0)+

∑
n)1

∞

(- i
p)n ∫0

t
dτn ∫0

τn dτn-1 · · · ∫0

τ2 dτ1 ×

G(t- τn)L
′(τn)G(τn - τn-1)L

′(τn-1) · · · ×
G(τ2 - τ1)L

′(τ1)G(τ1)F̂(0) . (9)

Equation 9 provides the order-by-order expansion of the
density matrix in the field and can be recast as F̂(t) ) F̂(0)(t)
+ F̂(1)(t) + F̂(2)(t) +... . F̂(n)(t) is the density matrix to nth
order in the field. The n’th-order induced polarization is the
quantity of interest in spectroscopy since it is a source of
the signal field. It is given by the expectation value of the
dipole operator

P(n) ) Tr[µ̂F̂(n)]. (10)
The induced polarization is given by P(t) ) P(1)(t) + P(2)(t)

+.... This polarization is a source of a new optical field. The
generated field is calculated for a simple sample geometry
in Appendix B. The signal optical field obtained by mixing
of incoming laser fields characterized by wavevectors
k1, k2, ... may be detected at certain directions ks ) (k1 (
k2 ( ... .

The linear response function connects the linear polariza-
tion with the field:52

P(1)(r, t))∫0

∞
dt1 R(1)(t1)E(r, t- t1) . (11)

Since P(1) and E are both vectors, R(1) is a second-rank tensor.
For clarity, we avoid tensor notation through most of the
review. It will be introduced only when necessary, in section
13. Expressions for the signals related to the linear response
function are summarized in Appendix A.

The linear response function is calculated by substituting
eq 9 into eq 10:52

R(1)(t1)) ( i
p)Tr[µ̂G(t1)V F̂0], (12)

where F̂0 is the equilibrium density matrix and VF̂ ≡ [µ̂, F̂]
is the dipole superoperator.

3. Response Functions of a Molecular Aggregate
Hereafter, we consider a molecular aggregate made of

three-level molecules, whose exciton level scheme is shown
in Figure 3.4 This model will be introduced microscopically
in section 6. The eigenstates of this model form distinct
manifolds (bands). The three lowest manifolds are g, the
ground state; e, the single-exciton states; and f, the double-
exciton states. The dipole operator only couples g to e (µeg)
and e to f (µfe). The number of chromophores (and single-
exciton states) is denoted by N. The linear response depends
only on the e manifold, whereas the third-order response
involves both the e and f bands.

The linear response function can be calculated by expand-
ing eq 12 in eigenstates,

R(1)(t)) ( i
p)θ(t)∑

e

µge µeg e-iωegt-γegt + c.c. , (13)

where the equilibrium density matrix is F̂0 ) |g〉〈g|, ωeg )
εe - εg, and we have added phenomenological dephasing
rate γeg to represent the decay of coherence. Dephasing will
be treated microscopically for a model of fast bath fluctua-
tions in section 8. Note that µge ) µeg

* .
Higher-order response functions may be defined and

calculated in the same way. Since the second-order response
vanishes for our model because of the dipole selection rules,
we shall focus on the third-order signals.

The third-order polarization induced in the system by the
optical field is related to the incoming electric fields by52

P(3)(r, t))∫0

∞
dt3 ∫0

∞
dt2 ∫0

∞
dt1 R(3)(t3, t2, t1) ×

E(r, t- t3)E(r, t- t3 - t2)E(r, t- t3 - t2 - t1),
(14)

where

R(3)(t3, t2, t1)) ( i
p)3

Tr[µ̂G(t3)VG(t2)VG(t1)VF0] (15)

is the third-order response function.
This expression represents a sequence of three interactions

with the incoming fields described by V, three free propagation
periods between interactions (G), and signal generation de-
scribed by the last µ̂. Since V is a commutator and µ̂ can act
either from the left or the right, eq 15 has 23 ) 8 contributions
known as LiouVille space pathways.

We shall consider time-domain experiments, where the
optical electric field consists of several pulses:

E(t))∑
j

∑
uj)(1

Ej
uj(t- τj) exp[iuj(kjr-ωj(t- τj))]. (16)

Here, Ej(t - τj) is the complex envelope of the jth pulse,
centered at time τj with carrier frequency ωj and wavevector
kj. The indices uj ) (1 represent the positive (uj ) +1) and
the negative (uj ) -1) frequency components of the field.
Note that Ej

- ) [Ej
+]*. The uj variables allow a compact

notation for the response functions. We assume that the
pulses are temporally well-separated: the pulse with wavevec-
tor k1 comes first, followed by k2 and finally k3.

The field is generated in the directions (k1 ( k2 ( k3.
The detector selects a signal in one direction. To calculate
the optical signals, we introduce the wavevector-dependent
polarization Pks

Figure 3. Excitonic aggregate made of coupled three-level
chromophores. εn is the excitation energy of each chromophore and
2(εn + Unnnn) is its double-excitation energy. The chromophores
are quadratically coupled by Jmn (and quartically by Umnkl). The
eigenstate energy level scheme is given on the right with g, the
ground state; e, the single-exciton manifold (e denotes “excited”
states); and f, the double-exciton manifold. In the resonant
techniques considered here, the optical field frequencies are tuned
to the energy gaps between successive manifolds.
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P(3)(r, t))∑
ks

Pks
(t) exp(iksr), (17)

where ks ) u1k1 + u2k2 + u3k3 is the signal wavevector,
and the sum runs over the possible choices of uj ) (1. We
assume resonant excitation and make the rotating-wave
approximation (RWA), where only low-frequency terms in
eq 14 (where the field and molecular frequency subtract ωj

- ωeg) are retained. High-frequency ωj + ωeg terms make a
very small contribution to the polarization and are neglected.
This is an excellent approximation for resonant techniques.
By combining eq 17 with eqs 14 and 16, we get

Pks
(t) )

exp[-iωs(t- τ3)- i(u2ω2 + u1ω1)(τ3 - τ2)-
iu1ω1(τ2 - τ1)] ×

∫∫∫0

∞
dt3 dt2 dt1 Rks

(3)(t3, t2, t1) ×

exp[iωst3 + i(u2ω2 + u1ω1)t2 + iu1ω1t1]E3
u3(t- t3 - τ3) ×

E2
u2(t- t3 - t2 - τ2)E1

u1(t- t3 - t2 - t1 - τ1), (18)

with the signal frequency given by ωs ) u1ω1 + u2ω2 +
u3ω3. The wavevector-dependent response function, Rks

(3),
represents the signal generated in the ks direction. For short
pulses, the integrand is finite when t3 ≈ t - τ3, t2 ≈ τ3 - τ2,
and t1 ≈ τ2 - τ1. Therefore, the integral needs to be
performed only in the narrow time window specified by pulse
envelopes. When the pulses are much shorter than their
delays, the pulse delays control the free propagation intervals
between interactions described by the Green’s functions.

There are four independent third-order techniques, defined
by the various choices of uj:

kI )-k1 + k2 + k3 (u1, u2, u3)) (-1, 1, 1), (19)

kII ) + k1 - k2 + k3 (u1, u2, u3)) (1,-1, 1), (20)

kIII ) + k1 + k2 - k3 (u1, u2, u3)) (1, 1,-1), (21)

kIV ) + k1 + k2 + k3 (u1, u2, u3)) (1, 1, 1). (22)

For our excitonic level scheme and its dipole selection rules,
the kIV signal vanishes within the RWA and will not be
considered any further.

The resonant third-order response may be interpreted using
the Feynman diagrams shown in Figures 4-6. These
represent the sequences of interactions with the various fields
as well as the state of the excitonic density matrix during

the intervals between interactions.52 The two vertical lines
represent the ket (left) and the bra (right) of the density
matrix. Time flows from bottom to top; the labels on the
graph indicate the density-matrix elements during the free
evolution periods between the radiative interactions. An
interaction with the optical field is marked by a dot. Each
interaction is accompanied by a transition dipole µ factor.
The density matrix elements can only change by an interac-
tion with the field. Wavy arrows pointing to the left indicate
an interaction with the negative frequency field component
E- exp[-ikjr], and those to the right indicate interaction with
the positive frequency E+ exp[ikjr]. Arrows coming into the
diagram represent absorption of a photon accompanied by a
molecular transition to a higher-energy state (g to e or e to
f); outgoing arrows represent photon emission and a transition
to a lower-energy state (e to g or f to e). The number of
interactions, p (red dots), on the right side (right line) of the
diagram determines its overall sign, which is (-1)p.

The kI signal is depicted in Figure 4. During t1, the
aggregate density matrix is in an optical coherence with a
characteristic frequency given by the energy difference
between states e and g, ωge. During the second interval (t2),
it is either in the ground state (gg) (ii) or in the singly excited-
state manifold (e′e) (i or iii). During the third interval (t3), it
again oscillates with optical frequencies ωe′g (i and ii) or
ωfe′ (iii).

The various contributions to the signal are denoted ground-
state bleaching (GSB), excited-state stimulated emission
(ESE), and excited-state absorption (ESA),52 as marked in
Figure 4. This nomenclature reflects the physical processes

Figure 4. Feynman diagrams for the signal generated in the
direction kI ) -k1 + k2 + k3; ESE ) excited-state emission, ESA
) excited-state absorption, and GSB ) ground-state bleaching.
Transport is not included in these diagrams (the coherent limit).
Population diagrams are labeled ia, ii, and iiia, and coherence
diagrams are labeled ib and iiib.

Figure 5. Feynman diagrams as in Figure 4 but for the signal
generated in the direction kII )+k1 - k2 + k3. Population diagrams
are labeled iva, v, and via, and the coherence diagrams are labeled
ivb and vib.

Figure 6. Feynman diagrams as in Figure 5 but for the signal
generated in the direction kIII ) +k1 + k2 - k3. ESE and GSB do
not contribute in this case, and the technique does not show
transport. The diagrams are labeled vii and viii for future reference.
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during the course of interactions: in the GSB pathway, the
system returns to the ground-state during the second interval
t2; thus, the third interaction reflects the reduction of the
ground-state population, which reduces (bleaches) the sub-
sequent absorption. In the ESE pathway, during t2, the system
is in the single-excited manifold and the third interaction
brings it back to the ground state by stimulated emission.
The ESA pathway has the same t1 and t2 dynamics as the
ESE; however, the third interaction creates a doubly excited
state f.

During the intervals between interactions (t1, t2, and t3),
the density matrix evolves freely (no field). For instance, in
the ESE (Figure 4) diagram, after the first interaction on the
right (bra), the system density matrix in the t1 interval is in
the state Fge, and its evolution gives an exp(-iωget1) factor,
where ωge ) εg - εe is the interband frequency. The second
interaction from the left with the ket creates the density
matrix element Fe′e, which then evolves as exp(-iωe′et2).
After the third interaction (with the bra), the density-matrix
element Fe′g is created and its evolution is exp(-iωe′gt3). The
overall contribution of this pathway to the response function
is

Ri(t3, t2, t1)) ( i
p)3

θ(t1)θ(t2)θ(t3)∑
ee′

µge′ µeg µe′g µge ×

exp(-iωget1 - iωe′et2 - iωe′gt3 - γget1 - γe′et2 - γe′gt3),
(23)

where the Heavyside step function, θ(t), ensures causality
(the response only depends on the fields at earlier times),
and we have added the phenomenological dephasing rate γab

for the ab coherence.
Similar to the three contributions to the kI technique shown

in Figure 4, kII has three contributions (Figure 5) and kIII

has two contributions (Figure 6). In the next section, we
provide closed expressions for all techniques by extending
this model to include exciton transport. The expressions
corresponding to the diagrams shown in Figures 4-6 may
be obtained from eqs 32-39 by setting the population
relaxation matrix to unity, Ge2e2,e1e1

(N) (t2) ) θ(t2)δe2e1
.

4. Optical Response of Excitons with Transport;
The Lindblad Master Equation

The time evolution of closed quantum systems can be
expanded in eigenstates that evolve independently by simply
acquiring exp(-iεjt) phase factors. Open systems (i.e.,
systems coupled to a bath) undergo various types of
relaxation and transport processes. These are commonly
described by the evolution of the reduced density matrix of
the system, where the bath variables have been projected
out.111,118,119

The dynamics of the reduced density matrix may be
described by a quantum master equation (QME). Its general
form may be obtained directly from the quantum mechanical
analogue of the classical Langevin equations of motion for
open systems.111 The derivation starts by phenomenologically
adding fluctuation and dissipation terms to the Schrödinger
equation. This yields the Schrödinger-LangeVin equation,

ψ̇)- i
p

Ĥψ- 1
2∑R V̂R

†V̂Rψ+∑
R

�R(t)V̂Rψ, (24)

where ψ is the wave function of the open system, V̂ is an
arbitrary set of system operators (independent of �) that

describe its coupling with the bath, and �R(t) are white noise
variables with zero mean, 〈�R(t)〉 ) 0, and short correlation
time, 〈�R(t)�	

*(t′)〉 ) δR, 	δ(t - t′). The form of eq 24
guarantees conservation of the norm of the wave function
when averaged over the noise.111

The QME that corresponds to this Schrödinger-Langevin
equation is known as the Lindblad equation.120-122

F̂̇ )- i
p

[Ĥ, F̂]+∑
R

(V̂RF̂V̂R
† - 1

2
V̂R

†V̂RF̂ -
1
2
F̂V̂R

†V̂R) .

(25)

It is derived from the Liouville equation for F̂(t) ≡ |ψ(t)〉〈ψ (t)|
using eq 24 followed by averaging over the noise variables.
This equation may be also derived from firmer foundations
that show how it preserves all essential properties of the
density matrix: it is hermitian with time-independent trace
(Tr(F̂) ≡ 1) and positive definite.111 It will be shown in
section 8 that the microscopic Redfield theory in the secular
approximation can be recovered by a specific choice of V̂R.
The secular Redfield equations decouple the populations
(diagonal elements of F̂ in the eigenstate basis) from the
coherences (off-diagonal elements). The populations then
satisfy the Pauli master equation:109,111

d
dt

Fee(t))-∑
e′

Kee,e′e′Fe′e′(t) . (26)

Here, Kee, e′e′ is the population transfer rate from state e′ into
e. This is an N × N matrix with two pairs of identical indices
(ee), (e′e′). In eq 26, the diagonal elements, e ) e′, Kee, ee

are positive, whereas the off-diagonal elements, e * e′, Kee, e′e′
are negative. The rate matrix satisfies ∑eKee, e′e′ ) 0 (prob-
ability conservation) and detailed-balance Ke2e2, e1e1

/Ke1e1, e2e2

) exp(-pωe2e1
/(kBT)); here, kB is the Boltzmann constant

and T is the temperature. These conditions are sufficient for
the system to reach thermal equilibrium at long times.111

The evolution of diagonal density-matrix elements is
described by the population Green’s function,
Fe′e′(t) ) ∑eGe′e′, ee

(N) (t)Fee(0), which is the probability of the
transition from state e into e′ during time t. The formal
solution of the Pauli master equation, eq 26, is given by

Ge′e′,ee
(N) (t)) [exp(-Kt)]e′e′,ee ≡∑

p

�e′p
(R)Dpp

-1 exp(-λpt)�pe
(L),

(27)

where λp is the pth eigenvalue of the left- and right-eigen
equations ∑e′Kee, e′e′�e′p

(R) ) λp�ep
(R) and ∑e′Ke′e′, ee� pe′

(L) )
λp�pe

(L). �(L) (�(R)) are matrices made out of the left (right)
eigenvectors, and D ) �(L)�(R) is a diagonal matrix. The
eigenvectors are organized as columns of �(R) and rows of
�(L). These two sets of eigenvectors are different since Ke′e′, ee

is not Hermitian, but they share the same eigenvalues λp.
�(L) and �(R)can be normalized as ∑e�p, e

(L) �e, p
(R) ) 1 for each p;

then �(R) ) �(L)-1 and D is the unitary matrix.
In the secular Redfield equation, the off-diagonal elements

satisfy

d
dt

Fe′e(t)) [-iωe′e - γe′e
(N)]Fe′e(t), e* e′. (28)

Its solution is Fe′e(t) ) exp(-iωe′et - γe′e
(N)t), where

γe′e
(N) ) 1

2
(Kee,ee +Ke′e′,e′e′)+ γ̂e,e′, (29)

The first two terms represent population relaxation, and γ̂e, e′
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is the pure-dephasing rate. For a compact representation of
the response functions, we shall combine the diagonal (eq
26) and off-diagonal (eq 28) blocks into a single tetradic
Green’s function representing both coherence and population
relaxation:

Fe4e3
(t))∑

e2e1

Ge4e3,e2e1

(N) (t)Fe2e1
(0) . (30)

Comparison of eq 30 with eqs 27 and 28 gives

Ge4e3,e2e1

(N) (t)) δe4e3
δe2e1

θ(t)[exp(-Kt)]e4e4,e2e2
+

(1- δe4e3
)δe4e2

δe3e1
θ(t) exp[-iωe4e3

t- γe4e3

(N) t].
(31)

This equation will be derived microscopically and further
extended in section 8.

For the kI and kII techniques, populations are generated
during the second time interval t2 in the ESA and ESE
diagrams of Figures 4 and 5 when e ) e′ (GSB includes
ground-state population during t2; since our model contains
a single ground state, no population relaxation occurs in the
ground state). Population created in state e′ can relax to e
during t2 according to eq 26. Coherences decay according
to eq 28.

By including this relaxation model, we obtain the follow-
ing sum over states (SOS) expression for the response
function for the kI technique (Figures 4 and 7),

RkI,i
(SOS)(t3, t2, t1))

( i
p)3

θ(t1)θ(t2)θ(t3) ∑
e4e3e2e1

µge4
µe3gµe2gµge1

×

exp(-i�e4gt3 - i�ge1
t1)Ge4e3,e2e1

(N) (t2), (32)

RkI,ii
(SOS)(t3, t2, t1)) ( i

p)3
θ(t1)θ(t2)θ(t3)∑

e4,e1

µge4
µe4gµe1gµge1

×

exp(-i�e4gt3 - i�ge1
t1), (33)

RkI,iii
(SOS)(t3, t2, t1))

- ( i
p)3

θ(t1)θ(t2)θ(t3) ∑
fe4e3e2e1

µe3fµfe4
µe2gµge1

×

exp(-i�fe3
t3 - i�ge1

t1)Ge4e3,e2e1

(N) (t2), (34)

where we have introduced the complex frequencies �ab ≡
ωab - iγab. Note that we do not include population relaxation
between the excited-state manifold and the ground state; this
would change G(N)(t2) and would influence the GSB t2

dependence.52

The oscillation frequencies during t1 and t3 have opposite
sense. For a two-level system (g and e), the frequency factors
cancel out at t1 ) t3. This eliminates inhomogeneous
broadening and gives rise to the photon-echo signal,70,123

which has been used for studying dephasing of coherent
dynamics in molecules and molecular complexes.124,125 For
multilevel systems (with a band of e states), this cancelation
will occur only for the diagonal e ) e′ contributions, in the
ESE and GSB pathways during t2 when transport is neglected.

The diagrams shown in Figure 7 extend Figures 4 and 5
to include population transfer during t2, as marked by the
pairs of dashed arrows. For e ) e′, the diagrams in Figure
7 coincide with Figures 4 and 5.

For the kII technique, we similarly have (Figures 5 and 7)

RkII,iv
(SOS)(t3, t2, t1)) ( i

p)3
θ(t1)θ(t2)θ(t3) ∑

e4e3e2e1

µge4
µe3g µge1

µe2g ×

exp(-i�e4gt3 - i�e2gt1)Ge4e3,e2e1

(N) (t2), (35)

RkII,v
(SOS)(t3, t2, t1)) ( i

p)3
θ(t1)θ(t2)θ(t3)∑

e4e2

µge4
µe4gµge2

µe2g ×

exp(-i�e4gt3 - i�e2gt1), (36)

RkII,vi
(SOS)(t3, t2, t1))-( i

p)3
θ(t1)θ(t2)θ(t3) ∑

fe4e3e2e1

µe3f µfe4
µge1

µe2g ×

exp(-i�fe3
t3 - i�e2gt1)Ge4e3,e2e1

(N) (t2) . (37)

The two contributions to the kIII (Figure 6) technique are of
the ESA type:

RkIII,vii
(SOS)(t3, t2, t1)) - ( i

p)3
θ(t1)θ(t2)θ(t3)∑

ee′f

µe′f µge′ µfe µeg ×

exp(-i�fe′t3 - i�fgt2 - i�egt1), (38)

RkIII,viii
(SOS) (t3, t2, t1)) ( i

p)3
θ(t1)θ(t2)θ(t3)∑

ee′f

µge′ µe′f µfe µeg ×

exp(-i�e′gt3 - i�fgt2 - i�egt1) . (39)

Note that exciton transport only enters kI and kII but not kIII

where exciton populations are never created.
The present phenomenological model allows an easy

calculation of the response functions. Exciton relaxation is
described by Markovian rate equations. More elaborate decay
patterns that show oscillations and nonexponential correlated
dynamics often observed in molecular aggregates41,48,126

require higher levels of theory that will be presented in the
coming sections.

5. Multidimensional Spectroscopy of a
Three-Band Model; Heterodyne-Detected Signals

The response functions introduced earlier may be used to
calculate the polarization induced by a resonant excitation.
The relation between the signal and the induced polarization
depends on the detection mode, as described in Appendix
B. Heterodyne detection is the most advanced detection
method that gives the signal field itself (both amplitude and
phase).

The third-order heterodyne-detected signal is given by

Sks

(3)(T3, T2, T1))∫-∞
∞

dt Pks
(t)Es

*(t- τs) eiωs(t-τs),

(40)

where the signal depends parametrically on the delays

Figure 7. Feynman diagrams for the kI and kII signals, which
extend diagrams ia, iiia and iva, via of Figures 4 and 5 by including
population transport.
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between pulses T3 ) τs - τ3, T2 ) τ3 - τ2, and T1 ) τ2 -
τ1. The notation τ ≡ T1, T ≡ T2, and t ≡ T3 is commonly
used. Experimentally the signal field is often dispersed in a
spectrometer. The entire T3 dependence is then measured in
a single shot rather by scanning the delay between the third
pulse and the signal. Es(t - τs) is the local oscillator field
envelope used for heterodyne detection. The first three pulses
are represented by eq 16, and the third-order polarization
P(3)(t) is given by eq 18.

Multidimensional signals are displayed in the frequency
domain by Fourier transforming Sks

(3)(T3, T2, T1) with respect
to the time intervals between the pulses.

Sks

(3)(Ω3, Ω2, Ω1))

∫0

∞
dT3 ∫0

∞
dT2 ∫0

∞
dT1 eiΩ3T3+iΩ2T2+iΩ1T1 Sks

(3)(T3, T2, T1) .

(41)

Often, one uses a mixed time-frequency representation by
performing double-Fourier transform. This gives, e.g.,
S(Ω3, T2, Ω1), etc.

Assuming that all four pulses are temporally well-
separated, the integrations can be carried out using the
response function eqs 32-39.127 Neglecting population
transport (Kee, e′e′ ≡ 0), this gives the following three
contributions to the kI signal (see Figures 4-6),

SkI,i
(SOS)(Ω3, Ω2, Ω1))

-∑
ee′

(µe′g
* ·Es

*(ωe′g-ωs))(µeg ·E3(ωeg -ω3)) ×

(µe′g ·E2(ωe′g -ω2))(µeg
* ·E1

*(ωeg-ω1))

p3(Ω3 - �e′g)(Ω2 - �e′e)(Ω1 - �ge)
, (42)

SkI,ii
(SOS)(Ω3, Ω2, Ω1))

-∑
ee′

(µe′g
* ·Es

*(ωe′g-ωs))(µe′g ·E3(ωe′g -ω3)) ×

(µeg ·E2(ωeg -ω2))(µeg
* ·E1

*(ωeg-ω1))

p3(Ω3 - �e′g)(Ω2 + iη)(Ω1 - �ge)
, (43)

SkI,iii
(SOS)(Ω3, Ω2, Ω1))

∑
fee′

(µfe
* ·Es

*(ωfe-ωs))(µfe′ ·E3(ωfe′ -ω3)) ×

(µe′g ·E2(ωe′g -ω2))(µeg
* · E1

*(ωeg - ω1))

p3(Ω3 - �fe)(Ω2 - �e′e)(Ω1 - �ge)
,

(44)
where e and e′ run over the single-exciton manifold, f runs over
the two-exciton states, and η f +0. ω1, ω2, and ω3 are the
carrier frequencies of the first three pulses, and ωab and �ab were
defined in sections 2 and 4. The spectral pulse envelopes

E(ω))∫ dt exp(iωt)E(t) (45)

are centered around ω ) 0.
For the kII signal, we similarly obtain

SkII,iv
(SOS)(Ω3, Ω2, Ω1))

-∑
ee′

(µeg
* ·Es

*(ωeg-ωs))(µe′g ·E3(ωe′g -ω3)) ×

(µe′g
* ·E2

*(ωe′g-ω2))(µeg ·E1(ωeg -ω1))

p3(Ω3 - �eg)(Ω2 - �ee′)(Ω1 - �eg)
, (46)

SkII,v
(SOS)(Ω3, Ω2, Ω1))

-∑
ee′

(µe′g
* ·Es

*(ωe′g-ωs))(µe′g ·E3(ωe′g -ω3)) ×

(µeg
* ·E2

*(ωeg-ω2))(µeg ·E1(ωeg -ω1))

p3(Ω3 - �e′g)(Ω2 + iη)(Ω1 - �eg)
, (47)

SkII,vi
(SOS)(Ω3, Ω2, Ω1))

∑
fee′

(µfe′
* ·Es

*(ωfe′-ωs))(µfe ·E3(ωfe -ω3)) ×

(µe′g
* ·E2

*(ωe′g-ω2))(µeg ·E1(ωeg -ω1))

p3(Ω3 - �fe′)(Ω2 - �ee′)(Ω1 - �eg)
, (48)

Finally, the kIII signal is given by

SkIII,vii
(SOS)(Ω3, Ω2, Ω1))

∑
fee′

(µfe′
* ·Es

*(ωfe′-ωs))(µe′g
* ·Es

*(ωe′g-ω3)) ×

(µfe ·E2(ωfe -ω2))(µeg ·E1(ωeg -ω1))

p3(Ω3 - �fe′)(Ω2 - �fg)(Ω1 - �eg)
, (49)

and

SkIII,viii
(SOS) (Ω3, Ω2, Ω1))

-∑
e′fe

(µe′g
* ·Es

*(ωe′g-ωs))(µfe′
* ·E3

*(ωfe′-ω3)) ×

(µfe ·E2(ωfe -ω2))(µeg ·E1(ωeg -ω1))

p3(Ω3 - �e′g)(Ω2 - �fg)(Ω1 - �eg)
. (50)

Note that resonances occur at both positive and negative Ωj.
Population relaxation may be added, as done in eqs 32-39.

However, the Ω2 dependence is then more complicated, and
it is usually preferable to display the signal S(Ω3, T2, Ω1) in
the time domain as a function of T2.

Equations 42-50 show how the pulse envelopes select
the possible transitions allowed by their bandwidths. The
pulse envelopes serve as frequency filters, removing all
transitions falling outside the pulse bandwidth. If the pulse
bandwidth is larger than the exciton bandwidth, we can set
E(ω) ) 1. This impulsive signal then coincides with the
response function.

This concludes the phenomenological supermolecule de-
scription of multidimensional signals in terms of the global
eigenstates. In the next section, we present the alternative,
quasiparticle, picture. Numerical applications of both ap-
proaches will be presented in the following sections.

6. Quasiparticle Representation of the Optical
Response; The Nonlinear-Exciton Equations (NEE)

The calculation of double-exciton states requires the
computationally expensive diagonalization of an M × M
matrix, where M ) N(N ( 1)/2 is the number of double-
exciton states, and N is the number of molecules. The
quasiparticle picture avoids the explicit calculation of the
two-exciton states making it more tractable in large
aggregates.68,79,102,104,106-108,128 This picture naturally emerges
out of equations of motion for exciton variables, the NEE,
that were derived and gradually developed at different
levels.79,107,108 Spano and Mukamel had shown how theories
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of optical susceptibilities in the frequency domain based on
the local mean-field approximation (MFA) can be extended
by adding two-exciton variables to properly account for two-
exciton resonances.102,128 The nonlinear response is then
attributed to exciton-exciton scattering.104,105 The formalism
was subsequently extended to molecular aggregates made
of three-level molecules and to semiconductors.68,114 Ad-
ditional relevant variables have been introduced to account
for exciton relaxation due to coupling with phonons.68 The
phonon degrees of freedom are formally eliminated; they
only enter through the relaxation rates. This results in the
Redfield equations for the reduced exciton density matrix.

By solving the NEE, we obtain closed Green’s function
expressions for the optical response that maintain the
complete bookkeeping of time ordering. Applications of this
approach were made to J-aggregates,103 pump-probe, photon-
echoes, and other four-wave mixing techniques of light-
harvesting antenna complexes.78,130,131

We first introduce the microscopic exciton model for an
aggregate made out of N three-level chromophores. The
special case of two-level chromophores is treated in Ap-
pendix C. Electronic excitations are expressed using the basis
set of the electronic eigenstates of each chromophore: these
are the ground state φm

(g), the single-excited state φm
(e), and

the double-excited state φm
(f). In the Heitler-London ap-

proximation,17 the aggregate ground state is given by a direct
product of the ground states of all chromophores,

Φg ) ∏m
N φm

(g). (51)

A single-excited-state basis is constructed by moving one
of the chromophores into its excited state,

Φem
) φm

(e)∏k
k*m φk

(g). (52)

Double-excitations are obtained either when one of the
chromophores is doubly excited

Φfmm
) φm

(f)∏k
k*m φk

(g) (53)

or when two chromophores are singly excited:

Φfmn
) φm

(e)
φn

(e)∏k
k*m,k*n φk

(g). (54)

Overall, our model has N singly excited states, and M )
N(N + 1)/2 doubly-excited states.

We next introduce an exciton-creation operator on mol-
ecule m:131

B̂m
† ) |φm

(e)〉 〈 φm
(g)|+ √2|φm

(f) 〉 〈 φm
(e)|. (55)

These operators have the following properties: single-exciton
states are created from the ground state Φem

) B̂m
† Φg, and

double-excitons are obtained either by creating two excita-
tions on different molecules, Φfmn; m*n ) B̂m

† B̂n
†Φg, or on the

same molecule, Φfmm
) 2-1/2B̂m

†2Φg (the �2 factor is introduced
to resemble bosonic exciton properties (B̂†|n - 1〉 ) √n |n〉)
within the single- and double-exciton space).

The Hermitian-conjugate, annihilation, operator will be
denoted B̂m. Operators corresponding to different chro-
mophores commute. The commutation relations of these
operators are (see Appendix C)

[B̂n, B̂m
† ]) δmn(1- 3

2
B̂m

†2B̂m
2 ) . (56)

Only these operators are required to describe the linear and
the third-order optical signals, which involve up to double-

exciton states. Higher, e.g., triple, excitations, B̂†B̂†B̂†Φg, will
not be considered.

We assume the following model Hamiltonian written in a
normally ordered form (i.e., all B̂† are to the left of B̂)68

Ĥ0 ) p∑
m

εmB̂m
† B̂m + p∑

mn

m*n

JmnB̂m
† B̂n +

p∑
mnkl

Umn,klB̂m
† B̂n

†B̂kB̂l , (57)

where pεn is the single-excitation energy of molecule n and
quadratic coupling pJmn is responsible for resonant exciton
hopping.132-134 The quartic couplings pUmn,kl represent vari-
ous types of anharmonicities that only affect the two-exciton
(and higher) manifolds. Terms that do not conserve the
number of excitons, such as B̂m

† and B̂m
†2, have been neglected

in this Hamiltonian (a more general Hamiltonian is discussed
in ref 135).

A simplified form of eq 57,

Ĥ0 ) p∑
m

εmB̂m
† B̂m + p∑

mn

m*n

JmnB̂m
† B̂n +

p∑
m

∆m

2
B̂m

† B̂m
† B̂mB̂m + p∑

mn

m*n Kmn

2
B̂m

† B̂n
†B̂mB̂n (58)

captures the essential physical processes. The diagonal term
∆m ) 2Umm,mm modifies the energy of two excitations on
the same site: 〈Φ fmm

|Ĥ0|Φfmm
〉/p ) 2εm + ∆m. Two-level

chromophores can be described by setting ∆m f ∞. This
prevents two excitations from residing on the same site. The
couplings Kmn/4 ) Umn, mn ≡ Umn, nm shift the two-exciton
energies with respect to the noninteracting excitons
〈Φ fmn

|Ĥ0|Φfmn
〉/p ) εm + εn + Kmn. They can be either

repulsive, K > 0, or attractive, K < 0.
We further assume the following form for the dipole

operator where each interaction with the field can create or
annihilate a single exciton:

µ̂)∑
m

[µmB̂m
† + µm

(2)B̂m
†2B̂m + h.c]. (59)

Here, h.c denotes the Hermitian conjugate. The transition
dipole 〈Φg|µ̂ |Φem

〉 ) µm gives the transition between the ground
and a single-excited state and 〈Φem

|µ̂|Φfmm
〉 ) √2 (µm + µm

(2)) is
the transition between a single- and a double-excited state.
Within the RWA, the coupling with the field (eq 3) is given by

Ĥ′(t)) p∑
m,j

(µm,j
- (t)B̂m

† + µm,j
+ (t)B̂m + µm,j

(2)-(t)B̂m
†2B̂m +

µm,j
(2)+(t)B̂m

† B̂m
2 ), (60)

where

µm,j
- (t))-p-1µm ·Ej(t- τj) exp(ikjr- iωjt) (61)

and

µm,j
(2)-(t))-p-1µm

(2) ·Ej(t- τj) exp(ikjr- iωjt) (62)

are the time-dependent transition amplitudes with µ- ≡
(µ+)*: µ- annihilates the photon and, thus, is conjugated to
the creation of exciton, while µ+ creates the photon ac-
companied by annihilation of the exciton. The total Hamil-
tonian is given by eq 1 together with eqs 57 and 60.

The exciton dynamics will be calculated starting with the
Heisenberg equations of motion
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ip
dÂ
dt

) [Â, Ĥ] . (63)

Taking Â ) B̂m and Â ) B̂mB̂n gives

i
d
dt

B̂m )∑
m′

hmm′B̂m′ +∑
m′kl

Vmm′,klB̂m′
† B̂kB̂l +

∑
j

[µm,j
- + 2µm,j

(2)-B̂m
† B̂m + µm,j

(2)+B̂mB̂m], (64)

i
d
dt

B̂mB̂n ) ∑
m′n′

hmn,m′n′
(Y) B̂m′B̂n′ +

∑
m′kl

[Vmm′,klB̂m′
† B̂kB̂lB̂n +Vnm′,klB̂n′

† B̂kB̂lB̂m]+

∑
j

[µm,j
- B̂n + µn,j

- B̂m + 2δmnµm,j
(2)-B̂m + 2µn,j

(2)-B̂n
†B̂nB̂m +

2µm,j
(2)-B̂m

† B̂mB̂n + 2µn,j
(2)+B̂nB̂nB̂m], (65)

with

hmn ) Jmn(1- δmn)+ δmnεm, (66)

hmn,m′n′
(Y) ) hmm′δnn′ + hnn′δmm′ +Vmn,m′n′ (67)

and Vmn,kl ) Umn,kl + Unm,kl. These are the first two members
of an infinite hierarchy of coupled equations.

Different-order contributions in the field can be easily
sorted out in these equations since interactions with the field
change the number of excitons one at a time. Thus, µ is first
order, B̂ is first order and higher, B̂†B̂B̂ and µ(2)B̂m

† B̂m are
third order and higher, and B̂†B̂B̂B̂ is at least fourth order,
etc.

When the system is in a pure state, it can be described by
a wave function (the expansion Φ ) ∑mcmB̂m

† |0〉 + CmnB̂m
† B̂n

†|0〉
is sufficient to represent the third-order response), and we
have 〈B̂m

† B̂n〉 ) 〈B̂m
† 〉〈B̂ n〉. We can further factorize 〈B̂m

† B̂nB̂k〉
) Bm

* Ynk where we used B ) 〈B〉 and Ymn ) 〈B̂mB̂n〉. Taking
expectation value of both sides of eqs 64 and 65, we obtain
the NEE to third order in the field107

i
d
dt

Bm )∑
m′

hmm′Bm′ +∑
m′kl

Vmm′,klBm′
* Ykl +

∑
j

[µm,j
- + 2µm,j

(2)-Bm
* Bm + µm,j

(2)+Ymm], (68)

i
d
dt

Ymn ) ∑
m′n′

hmn,m′n′
(Y) Ym′n′ +

∑
j

[µm,j
- Bn + µn,j

- Bm + 2δmnµm,j
(2)-Bm] . (69)

Quartic products B̂†2B̂2 contribute only to fourth and higher
orders in the fields and were neglected. Within this space of
relevant states, the exciton commutation relation, eq 56, can
be, therefore, replaced by the boson commutation relation,

[B̂m, B̂n
†]boson ) δmn, (70)

which we use in the following derivations. Equation 70
allows the creation of triple- and higher-exciton states on
each chromophore; however, these lie outside of the physical
space of states relevant for third-order spectroscopy. Exact
bosonization procedures can be performed for arbitrary
models of nonbosonic truncated oscillators99,136,137 as well
as fermions.107,138,139 We review the bosonization of two-
level molecules in Appendix C. The same ideas can be

applied to multilevel molecules (truncated oscillators).
Different levels of approximation will be introduced for

truncating the hierarchy of eqs 64 and 65. The simplest,
mean-field approximation (MFA), which is equivalent to the
Hartree-Fock approximation in many-electron problems114

uses the full factorization of all normally ordered products
〈B̂B̂〉 ) 〈B̂〉〈B̂ 〉 and 〈B̂†B̂〉 ) 〈B̂†〉〈B̂ 〉, 〈B̂†B̂B̂〉 ) 〈B̂†〉〈B̂ 〉〈B̂ 〉.102,128

The excitons are treated as noninteracting quasiparticles,
each moving in the mean field created by the others.
Equation 64 is then closed, and the other equations become
redundant.103 A higher-level approximation factorizes all
daggered and undaggered variables 〈B̂†B̂〉 ) 〈B̂†〉〈B̂ 〉
and 〈B̂†B̂B̂〉 ) 〈B̂†〉〈B̂ B̂〉 , while retaining the 〈B̂B̂〉
variables.79,104,105 This coherent exciton dynamics (CED)
takes into account two-particle statistics but neglects trans-
port. Equations 68 and 69 then form a complete closed set.
Another possible factorization 〈B̂†B̂B̂〉 ) 〈B̂†B̂〉〈B̂ 〉 neglects
double-exciton statistical properties, while maintaining trans-
port. This level of theory is equivalent to the Semiconductor
Bloch equations (SBE) with dephasing, used for Wannier
excitons.114 The response functions predicted by these various
levels of approximation will be discussed in the coming
sections.

7. Coherent Nonlinear Optical Response of
Quasiparticles in the Molecular Basis

The response functions, eqs 14 and 18, connect the induced
polarization to the incoming laser electric fields. The third-
order signals can be calculated using the Green’s function
solution of the equation hierarchy, eqs 64 and 65 (eqs 68
and 69 as a special case). The induced polarization is defined
as the expectation value of the dipole operator (eq 59).

7.1. Linear Response
In the linear regime, we get

P(1)(t))∑
m

µm
* Bm

(1)(t)+ c.c. (71)

Single-exciton dynamics when the field is switched off is
described by

i
d
dt

Bm
(1) )∑

m′
hmm′Bm′

(1), (72)

obtained from eq 68 with Y ≡ 0. Propagation of excitons is
described by a single-exciton Green’s function,

d
dt

Gmn )-i∑
m′

hmm′Gm′n + δ(t)δmn, (73)

whose solution is G(t) ) θ(t) exp(-iht), where h is the matrix
with elements hmn. The solution of eq 72 is given by Bm

(1)(t)
) Gmn(t)Bn

(1)(0).
The first-order terms in the NEE equations are obtained

from

i
d
dt

Bm
(1) )∑

m′
hmm′Bm′

(1) +∑
j

µm,j
- . (74)

Substituting the Green’s function solution of eq 74,

Bm
(1)(t))-i ∫-∞

t
dτ∑

n, j

Gmn(t- τ)µn,j
- (τ) (75)

into eq 71, and using eq 11, we get the linear response
function:
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R(1)(t)) ( i
p)1∑

mn

µm
* µnGmn(t)+ c.c. (76)

Linear response techniques are surveyed in Appendix A.

7.2. Third-Order Response
The third-order induced polarization is

P(3)(t))∑
m

µm
* 〈B̂m〉 (3) + µm

(2)*〈B̂m
† B̂mB̂m〉 (3) + c.c. (77)

Below, we present two levels of approximation for the kI,
kII, and kIII techniques: the MFA and the coherent exciton
dynamics (CED) limit.

7.2.1. Mean-Field Approximation

At this level of theory, we make the factorizations 〈B̂B̂〉
) 〈B̂ 〉〈B̂ 〉. Equation 68 then becomes

i
d
dt

Bm )∑
m′

hmm′Bm′ +∑
m′kl

Vmm′,klBm′
* BkBl +

∑
j

µm,j
- + 2µm,j

(2)-Bm
* Bm + µm,j

(2)+BmBm (78)

and the polarization (eq 77) reduces to

P(3)(r, t))∑
m

[µm
* Bm

(3)(t)+ µm
(2)*Bm

(1)*(t)Bm
(1)(t)Bm

(1)(t)+ c.c.].

(79)

The first-order variable is given by eq 75. The second-order
variables vanish, and to third order from eq 78 we get

Bm
(3)(t))-i ∫-∞

t
dτ Gmn(t- τ) ×

[Vnn′,klBn′
(1)*(τ)Bk

(1)(τ)Bl
(1)(τ)+

2µn,j
(2)-(τ)Bn

(1)*(τ)Bn
(1)(τ)+ µn,j

(2)+(τ)Bn
(1)(τ)Bn

(1)(τ)]. (80)

Here and later, summations over repeating indices are
implied. Below we present simplified expressions obtained
by setting µm

(2) ) 0. The complete third-order polarization
obtained by substituting eqs 75 and 80 into eq 79 is given
in Appendix D.

The kI response function is generated by the VB(1)*B(1)B(1)

term in eq 80 as follows: pulse 1 creates B(1)*, while the
second and third pulses generate B(1) (in any order). This
gives

RkI

(MFA)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3
µn2

µn1

* ∫0

t3 dτVn4
′n1

′ ,n3
′n2

′ ×

Gn4n4
′(t3 - τ)Gn3

′n3
(τ)Gn2

′n2
(t2 + τ)Gn1

′n1

* (t1 + t2 + τ). (81)

For the kII technique, we similarly have

RkII

(MFA)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3
µn2

* µn1
∫0

t3 dτVn4
′n2

′ ,n3
′n1

′ ×

Gn4n4
′(t3 - τ)Gn3

′n3
(τ)Gn2

′n2

* (t2 + τ)Gn1
′n1

(t1 + t2 + τ), (82)

and for kIII,

RkIII

(MFA)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3

* µn2
µn1

∫0

t3 dτVn4
′n3

′ ,n2
′n1

′ ×

Gn4n4
′(t3 - τ)Gn3

′n3

* (τ)Gn2
′n2

(t2 + τ)Gn1
′n1

(t1 + t2 + τ). (83)

In these expressions, the kj pulse interacts with chromophore
nj, and j ) 4 denotes the signal generated at chromophore

n4. We thus keep track of all interaction wavevectors and
polarizations.

Corresponding frequency-domain expressions of the sig-
nals are given as a special case of eqs 127-129 and will be
discussed in section 9.

7.2.2. The Coherent Exciton Dynamics (CED) Limit

When the system-bath coupling is neglected, the system
remains in a pure state and can be described by a wave
function at all times. Equations 68 and 69 then adequately
describe the coherent short time dynamics.

A Green’s function for the Y variable is now required for
solution of the NEE. The Y variables describe two-exciton
dynamics. The corresponding Green’s function defined by
Ymn(t) ) Gmn,kl(t)Ykl(0) satisfies

d
dt

Gmn,kl )-i∑
m′n′

hmn,m′n′
(Y)

Gm′n′,kl + δ(t)δmkδnl .

(84)

The solution, G(t) ) θ(t) exp(-ih(Y)t), requires the diago-
nalization of a tetradic matrix h(Y). To avoid this diagonal-
ization, we calculate this Green’s function using the
Bethe-Salpeter equation, as described in Appendix E. In
that appendix, we further introduce the exciton scattering
matrix Γ, which allows one to interpret double-exciton
resonances in terms of the exciton scattering.

By expanding the variables in powers of the fields, the
first-order variable is given by eq 75 and the second-order
variable

Ymn
(2)(t))-2i ∫-∞

t
dτ Gmn,m′n′(t- τ) ×

[µm′,j
- (τ)Bn′

(1)(τ)+ δm′n′ µm′,j
(2)-(τ)Bm′

(1)(τ)], (85)

where we have further used the relation Gmn,m′n′ ≡ Gmn,n′m′ ,
which results from boson symmetry. Equation 68 then gives

Bm
(3)(t))-i ∫-∞

t
dτ Gmn(t- τ)[Vnn′,klBn

(1)*(τ)Ykl
(2)(τ)+

2µn,j
(2)-(τ)Bn

(1)*(τ)Bn
(1)(τ)+ µn,j

(2)+(τ)Ynn
(2)(τ)]. (86)

The polarization (eq 77) is given by

P(3)(r, t))∑
m

[µm
* Bm

(3)(t)+ µm
(2)*Bm

(1)*(t)Ymm
(2) (t)+ c.c.].

(87)

For µm
(2) ) 0, we get for the kI response function

RkI

(CED)(t3, t2, t1))

2i ( i
p)3

µn4

* µn3
µn2

µn1

* ∫0

t3 dτVn4
′n1

′ ,n3
′n2

′ ×

Gn4n4
′(t3 - τ)Gn3

′n2
′ ,n3n2

′′(τ)Gn2
′′n2

(t2)Gn1
′n1

* (t1 + t2 + τ).

(88)

We recast this result using the exciton scattering matrix
(see Appendix E). Substituting eq 324 in eq 88 with Gmn,kl

(0) (t)
≡ Gmk(t)Gnl(t), we get

RkI

(CED)(t3, t2, t1)) 2 ( i
p)3

µn4

* µn3
µn2

µn1

* ×

∫0

t3 dτ ∫0

τ
dτ′Gn4n4

′(t3 - τ)Γn4
′n1

′ ,n3
′n2

′(τ- τ′) ×

Gn3
′n3

(τ′)Gn2
′n2

(t2 + τ′)Gn1
′n1

* (t1 + t2 + τ). (89)

Similarly, we obtain for kII

2362 Chemical Reviews, 2009, Vol. 109, No. 6 Abramavicius et al.



RkII

(CED)(t3, t2, t1)) 2 ( i
p)3

µn4

* µn3
µn2

* µn1
×

∫0

t3 dτ ∫0

τ
dτ′ Gn4n4

′(t3 - τ)Γn4
′n2

′ ,n3
′n1

′(τ- τ′) ×

Gn3
′n3

(τ′)Gn2
′n2

* (t2 + τ)Gn1
′n1

(t1 + t2 + τ′) (90)

and for kIII:

RkIII

(CED)(t3, t2, t1)) 2 ( i
p)3

µn4

* µn3

* µn2
µn1

×

∫0

t3+t2 dτ ∫0

τ
dτ′ Gn4n4

′(t3 - τ)Γn4
′n3

′ ,n2
′n1

′(τ- τ′) ×

Gn3
′n3

* (τ)Gn2
′n2

(t2 + τ′)Gn1
′n1

(t1 + t2 + τ′). (91)

Γn4n3, n2n1
is the exciton scattering matrix in two-exciton space.

It is a tetradic matrix, whose indices n1 and n2 represent
incoming excitons and n3 and n4 are outgoing excitons. The
scattering is induced by the coupling V. The scattering matrix
is given by

Γ(ω)) [1-VG
(0)(ω)]-1V, (92)

where

Gn1n2,n3n4

(0) (ω)) i ∫ dω′

2π
Gn1n3

(ω′)Gn2n4
(ω-ω′). (93)

Closed frequency-domain expressions of the signals
corresponding to eqs 89-91 are obtained from eqs
127-129 by neglecting transport and setting Ge4e3,e2e1

(N) (ω) )
δe4e2

δe3e1
[ω - (εe2

- εe1
) + i(γe2

+ γe1
)]-1, as discussed

in section 9.

The physical picture for exciton dynamics emerging from
this level of theory is very different from the MFA: excitons
scatter by their mutual interactions as demonstrated by the
diagrams in Figure 8 during the time interval τ - τ′ > 0.
This scattering changes the resonant frequencies; thus, the
correct double-exciton resonances are recovered.

8. Coupling with Phonons; Exciton-Dephasing
and Transport

So far, we have expressed the third-order response in terms
of exciton Green’s functions. These must be calculated in
the presence of a bath to include dephasing and population
relaxation. In section 4, we have introduced the bath
phenomenologically using the Lindblad master equation. We
now derive and extend these results using a microscopic
model of the phonon bath.107

8.1. Reduced Dynamics of Excitons Coupled to a
Bath

As in section 6, we consider an aggregate made out of N
three-level molecules and described by the Frenkel exciton
Hamiltonian:

Ĥ) Ĥ0 + ĤB + ĤSB + Ĥ′(t). (94)

Ĥ0 (eq 58) and Ĥ′ (eq 60) represent the isolated system and
system-field Hamiltonians, respectively.

We shall use a harmonic model for the bath,

ĤB )∑
R
pwR(âR

† âR+
1⁄2), (95)

where R runs over the bath oscillators and âR
†(âR) are Bose

creation (annihilation) operators that satisfy [âR, â	
†] ) δR	.

Note that

âR
† ) (2mRpwR)-1⁄2(mRwRQ̂R- iP̂R), (96)

âR) (2mRpwR)-1⁄2(mRwRQ̂R+ iP̂R), (97)

where Q̂R and P̂R are the coordinate and momentum of bath
oscillator R with frequency wR. The system-bath coupling
is assumed to be linear in bath coordinates

ĤSB ) p∑
mnR

dmn,RB̂m
† B̂n(âR

† + âR), (98)

where the coupling parameters dmn,R represent bath-induced
fluctuations of the transition energies (m ) n) and the
intermolecular couplings (m * n). For strongly coupled
systems (J . d), both contribute to energy-level and coupling
fluctuations when transforming to the eigenstate basis.

Because of the coupling with the bath, the factorization
〈B̂†B̂〉 into 〈B̂†〉〈B̂ 〉 in eqs 64 and 65 now no longer holds,
and exciton dynamics for the first-to-third orders in the field
depends on two additional variables, Nmn ) 〈B̂m

† B̂n〉 and
Zkmn ) 〈B̂k

†B̂mB̂n〉. The bath-induced terms are calculated in
Appendix F and result in the relaxation rates for the exciton
variables. The full set of equations up to third order in the
field finally reads

i
d
dt

Bm ) [hB]m - i[γB]m +∑
m′kl

Vmm′,klZm′,kl +

∑
j

[µm,j
- + 2µm,j

(2)-Nmm + 2µm,j
(2)+Ymm],

(99)

i
d
dt

Ymn ) [h(Y)Y]mn - i[γ(Y)Y]mn+

∑
j

[µj
-XB+BXµj

-]mn + 2δmnµm,j
(2)-Bm,

(100)

i
d
dt

Nmn ) [L̃N]mn - i[K̃N]mn+

∑
j

-[µj
+XB]mn + [B*Xµj

-]mn,
(101)

Figure 8. Feynman diagrams representing the quasiparticle
dynamics in the various techniques for µ(2) ) 0 in the coherent
limit (eqs 89-91). Each interaction with the field is displayed by
a solid dot. Time propagation is from the bottom up. The single
solid line represents G(t) propagation; the shaded region represents
the exciton scattering region.
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i
d
dt

Zkmn )∑
m′n′

(h(Y) - iγ(Y))mn,m′n′Zkm′n′ -

∑
k′

(hk′k + iγk′k
* )Zk′mn +

∑
j

[Nkn µm,j
- +Nkm µn,j

- - µk,j
+Ymn + 2δmnµm,j

(2)-Nkm],

(102)

where we have used L̃ mn, m′n′ ) hnn′δmm′ - hmm′δnn′, which is
derived from the single-exciton Liouville operator L(1); “X”
denotes the direct product of two vectors: [A X B]mn ) AmBn.
The relaxation rate matrices are calculated using eqs 355
and 359. The rate matrix K̃ is given by eq 362 (since
Fnm ) Nmn, the corresponding relaxation matrices satisfy Kmn,kl

) K̃nm,lk).
Some useful approximations may be used for the relaxation

matrices. γmn,kl
(Y) will be represented approximately as

γmn,kl
(Y) ≈ γmkδnl + γnlδmk. For certain parameter regimes, the

full Redfield relaxation operator K may lead to unphysical
(negative and larger than 1) probabilities.111,140 In the next
section, we convert the operator in the eigenstate basis into
the Lindblad’s form, which guarantees a physically accept-
able solution.

8.2. Redfield Equations in the Secular
Approximation: The Lindblad Form

The secular approximation described in section 4 is widely
used since it guarantees a physical behavior of the propagated
density matrix.111,120,141-145 We shall transform eq 101 into
the single-exciton basis, i.e., the eigenstates of the h matrix,
hψe ) εeψe. This gives (the field is turned off)

d
dt

Ne2e1
) iωe2e1

Ne2e1
-∑

e2
′e1

′
Ke1e2,e1

′e2
′Ne2

′e1
′. (103)

Assuming that ωe2e1
* ωe2

′e1
′ and both frequencies are larger

than values of K, the couplings between different coherences
can be neglected within the RWA, and only the dephasing
terms may be retained in the reduced relaxation operator.
However, since ωee ) 0, populations do couple. We thus
obtain Ke4e3,e2e1

≡ Ke4e4,e2e2
δe4e3

δe2e1
+ γe4e3

(N) δe4e2
δe3e1

with γee
(N)

) 0. For the Redfield equation in the eigenstate basis in the
secular approximation, populations are decoupled from
coherences. Furthermore, each coherence satisfies its own
equation and is decoupled from the rest. Populations satisfy
the Pauli master equation (eq 26) with population transport
rates, Kee,e′e′ . Closed expressions for the relaxation rates and
for γee′

(N) ) Kee′,ee′ in the eigenstate representation in terms of
the bath spectral density are given in Appendix G. This
approximation for the relaxation operator, also known as the
Davies procedure,146 guarantees that the density matrix
remains positive-definite. Some examples of nonphysical
behavior of the full Redfield equation are given in refs 111,
122, 140, and 142. Similar difficulties have been found for
the Bloch equations, which describe the nuclear induction
of a spin that interacts with a magnetic field.147 The problems
associated with the Redfield equations are a consequence of
the second-order perturbation theory and the Markovian
approximation.140 Various schemes have been suggested to
remedy this, by introducing short-time corrections to these
equations.140,148,149 These were shown to give physical results
for specific model systems and some ranges of parameters,
where the Markovian Redfield equation breaks down. Unlike

the secular approximation, these schemes do not guarantee
the positivity of the density matrix. The secular approxima-
tion, when applied to the Redfield equation, brings it into
the Lindblad form.111,120 The stochastic Liouville equation
described in section 12 allows a more general description
of the dynamics that does not rely on the secular approxima-
tion and guarantees a physically acceptable behavior.

In the eigenstate basis, the Lindblad equation (eq 25) can
be written as

Ḟe2e1
)-iωe2e1

′ Fe2e1
+ ∑

c,d,e3,e4

(Ve2e3

(c,d)Fe3e4
(Ve1e4

(c,d))* -

1
2
Fe2e3

(Ve4e3

(c,d))*Ve4e1

(c,d) - 1
2

(Ve3e2

(c,d))*Ve3e4

(c,d)Fe4e1), (104)

where we represent R by a pair of indices c and d. This will
be convenient for connecting with the Redfield equation.
Ve3e4

(c,d) ) 〈Ψe3
|V̂(c,d)|Ψe4

〉 where V̂(c,d) has been projected into
the one-exciton eigenstate, Ψe ) ψemΦem

with Φem
and ψlm

defined in sections 6 and 9.
We next present the set of V̂’s that reproduce the Redfield

relaxation rates of Appendix G. We define two types of V
matrices: the first contains only a single nonzero off-diagonal
element

Ve1e2

(c,d) ) ae1,e2
δe1,cδe2,d(1- δc,d) (105)

with c * d. Since the rank of the Ne2e1
matrix is N, there are

N(N - 1) such V(c, d) matrices (these correspond to all off-
diagonal elements of Ne2e1

). The remaining N matrices are
associated with the diagonal elements (c ) d):

Ve1e2

(c,d) ) be1

(c)δe1e2
δcd. (106)

The elements a and b represent off-diagonal and diagonal
fluctuations of the single-exciton Hamiltonian. They can be
determined by writing equations for the population and the
coherences using eqs 104, 105, and 106 and comparing with
the Redfield equation within the secular approximation, eq
103. The a’s govern the population transport and are given
by

|ac,d|
2 )Kcc,dd. (107)

To obtain the b’s, one needs to solve the equation

γ̂e1,e2
)- 1

2∑c

(be1

(c) - be2

(c))2, (108)

where γ̂e1,e2
is the pure-dephasing rate (as introduced in eq

29),

Re(Ke1e2,e1e2
))

Ke1e1,e1e1
+Ke2e2,e2e2

2
+ γ̂e1,e2

.

(109)

Multiple solutions for the b’s exist since eq 108 contains
N(N - 1) equations with N2 unknowns (the N equations
for e1 ) e2 in eq 108 are satisfied for any choice of b’s).
One particular solution is obtained from the rate expressions
of Appendix G:

be
(c) ) (2∑	

λ	Re(Mj 	
(+)(0)))1⁄2ψe,c

2 . (110)

Finally, the frequency, ωe1e2
′ in eq 104 is related to ωe1e2

in
eq 103 by a level-shift,
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ωe1e2

′ )ωe1e2
- Im(Ke1e2,e1e2

). (111)

This demonstrates that the Redfield equations in the secular
approximation can be recast in the Lindblad form. In general,
however, the Lindblad equation (eq 104) can go beyond the
secular Redfield equation and can couple populations and
coherences. They always guarantee to yield a physically
acceptable result.

8.3. Transport of Localized Excitons; Förster
Resonant Energy Transfer (FRET)

The full Redfield Green’s function derived by a second-
order expansion of the rates in the system-bath couplings,
couples populations and coherences. It is invariant to the
basis set used, i.e., a unitary transformation between the
localized and delocalized basis sets does not affect the
dynamics.144 However, because of the different way popula-
tions and coherences are treated, the secular approximation
is basis-set dependent. The delocalized eigenstate basis
represents strongly coupled chromophores. For weakly
coupled chromophores, the aggregate eigenstates are es-
sentially localized on individual chromophores and the real-
space representation then constitutes the natural basis set,
where the Redfield equations become

Ḟmn )-iωmnFmn -∑
kl

Kmn,klFkl . (112)

Making the secular approximation in this basis, the Redfield
relaxation operator becomes Kmn,kl ) δmnδklKmm,kk

(F) + δmkδnlγmn
(N)

where K(F) is known as the Förster exciton-transfer rate. Note
that γnn

(N) ) 0 (see discussion following eq 103). When the
intermolecular distance is large compared to molecular sizes,
we can further invoke the dipole-dipole approximation for
intermolecular interactions. The exciton transfer rate between
molecules is then known as the Förster rate for the energy
transfer between the “donor”, D, and the “acceptor”, A,
molecules:4,150

KAA,DD
(F) ) 2π

p2
|VDA|2

∫ dω
ω4

FD(ω)εA(ω)

∫ dω
ω3

FD(ω)∫ dω
ω

εA(ω)
, (113)

where FD(ω) is the fluorescence spectrum of the donor
molecule, εA(ω) is the absorption spectrum of the acceptor
molecule, and VDA is the dipole-dipole coupling between
the molecules:

VDA )
1

4πε0ε(µD · µA

|RDA|3
-

3(µD ·RDA)(µA ·RDA)

|RDA|5 ) (114)

Here, µ are the transition dipoles and RDA is the vector
connecting the donor and acceptor molecules. Note that the
exciton transfer rate includes the diagonal energy fluctuations.
In practical applications, one uses the experimental absorp-
tion εA(ω) and emission FD(ω) spectra in the Förster formula.
The strong ∼R-6 dependence of K(F) is used in fluorescence
resonant energy transfer (FRET) studies, to probe molecular
structural fluctuations and energy transport.151,152

For small RDA, the molecular electron densities begin to
overlap and energy transfer can proceed via a different,
Dexter, mechanism involving the double exchange of an
electron and a hole between the donor and acceptor
molecules. This mechanism, which results in an exponential,

∼e-RR; R > 0, dependence of the rate on the distance is
particularly important for triplet excitons where the optical
transition is forbidden and the Förster rate vanishes.153,154

9. Optical Response of Quasiparticles with
Relaxation

We now derive closed QP expressions for the response
functions in the exciton eigenstate basis. Exciton transport
takes place during t2. During the delay periods t1 and t3, we
only include dephasing and neglect transport. This is usually
justified since population relaxation times (ps to ns) are
typically longer than the interband dephasing times (100 fs).

The procedure for calculating the response function for
the full set of eqs 99 and 100 is the same as in section 7.2.2:
the dynamical variables are expanded to third order in the
field using the necessary Green’s functions. These include
the Green’s functions for the N and the Z variables:
N(t) ) G̃(N)(t)N(0) and Z(t) ) G(Z)(t)Z(0) where N ) 〈B̂†B̂〉
and Z ) 〈B̂†B̂B̂〉. G̃(N) is a tetradic matrix, while G(Z) is sextic.
Note that the N variable corresponds to the transpose of the
density matrix in the single-exciton space, i.e., Nmn ≡ Fnm.
The same holds for the Green’s functions in the real-space
representation (compare eq 31), so that G̃mn,kl

(N) ) Gnm,lk
(N) , and

so we will use only G(N). The response functions obtained
by solving eqs 99 and 100 with the polarization equation
(eq 77) are given by

RkI

(QP)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3
µn2

µn1

* ×

∫0

t3 dt′ Gn4n4
′(t

′)Vn4
′n1

′ ,n3
′n2

′ ×

Gn1
′n3

′n2
′ ,n1

′′n3n2
′′

(Z) (t3 - t′)Gn2
′′n1

′′,n2n1
′′′

(N) (t2)Gn1
′′′n1

* (t1),

(115)

RkII

(QP)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3
µn2

* µn1
×

∫0

t3 dt′ Gn4n4
′(t

′)Vn4
′n2

′ ,n3
′n1

′ ×

G n2
′n3

′n1
′ ,n2

′′n3n1
′′

(Z) (t3 - t′)G n1
′′n2

′′,n1
′′′n2

(N) (t2)Gn1
′′′n1

(t1),

(116)

RkIII

(QP)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3

* µn2
µn1

×

∫0

t3 dt′ Gn4n4
′(t

′)Vn4
′n3

′ ,n2
′n1

′ ×

G n3
′n2

′n1
′ ,n3n2

′′n1
′′

(Z) (t3 - t′)Gn2
′′n1

′′,n2n1
′′′(t2)Gn1

′′′n1
(t1).

(117)
The exciton creation and annihilation events and the

propagation of exciton variables for our model with
µ(2) ) 0 are sketched diagrammatically in Figure 9. The
excitons are created/annihilated at each solid dot, and time
propagations are represented by solid arrows. Arrow-up
represents G, while arrow-down stands for the conjugate
propagation. Two lines within the t2 interval represent G
(when both point up) and G(N) (when pointing in opposite
directions). Three lines (triple propagation) within the t3

interval represent G(Z). A horizontal dashed line stands for
the V matrix.

RkI
is depicted in the left diagram. The interval between

the first and second interactions is described by the single-
exciton variable 〈B̂†〉, whose propagation oscillates with
interband frequencies according to G†(t1). During the second
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interval, the system is characterized by 〈B̂†B̂〉 and its
propagation given by G(N)(t2). This oscillates at low, intraband
frequencies associated with differences between single-
exciton energies on different sites and their couplings. The
〈B̂†B̂B̂〉 variables generated during the third interval propagate
according to G(Z)(t3 - t′), which again oscillate with high
interband frequencies. The evolution during t2 is strongly
influenced by the bath since the low, intraband oscillation
frequencies are close to the bath frequencies. Therefore, the
interplay of incoherent transport and dynamics will be most
important during this interval as described by G(N)(t2). The
high-frequency evolution during t1 and t3 is only weakly
influenced by the bath (unless it contains resonances at
optical frequencies).

Approximate factorizations will be used next to simplify
the calculation of the Green’s functions G(Z) and G: by
neglecting exciton population relaxation in the third interval,
we can set G kmn,k′m′n′

(Z) ≈ G kk′
*

Gmn,m′n′.68 G is expressed in
terms of the exciton-scattering matrix Γ (Appendix E). The
secular approximation, eq 31, will be used for G(N) so that
exciton eigenstate populations will be decoupled from their
coherences.

The Green’s function expression (eqs 115-117) assumes
a simpler form in the one-exciton eigenstate basis, e. The
one-exciton Green’s functions become

Ge(t) ≡∑
mn

ψem
* ψenGmn(t)) θ(t) exp(-iεet- γet),

(118)

where the single-exciton dephasing, γe, is derived in Ap-
pendix G. In the frequency domain, we have

Ge(ω) ≡ 1
ω- εe + iγe

. (119)

Exciton scattering (Appendix E) is best described in the
eigenstate basis.79,91,108 This leads to efficient truncation
schemes of the scattering matrix, based on transition
amplitudes and on the exciton-overlap integrals. The
scattering picture has been applied to infinite symmetric
systems and to large disordered aggregates with localized
excitons.79,82,92,94,155,156

The transformation of the scattering matrix from the local
to the exciton basis reads

Γe4e3,e2e1
) ∑

n4n3n2n1

ψe4n4

* ψe3n3

* ψe2n2
ψe1n1

Γn4n3,n2n1
(120)

Equation 325 expresses the scattering matrix in terms
of the tetradic noninteracting-exciton Green’s function.
In the eigenstate basis, the latter is diagonal,

G e4e3,e2e1

(0) ≡Ge2e1

(0) δe4e2
δe3e1

,

G e2e1

(0) (Ω) ≡ ∑
n4n3n2n1

ψe2n4

* ψe1n3

* ψe2n2
ψe1n1

G n4n3,n2n1

(0) (Ω)

) 1
Ω- εe2

- εe1
+ iγe2

+ iγe1

(121)

and is related to the single-exciton Green’s functions by a
convolution:

G e′e
(0)(ω)) i∫ dω′

2π
Ge(ω

′)Ge′(ω-ω′). (122)

To describe the dynamics of the N variables, we transform
their Green’s function to the exciton basis:

G e4e3,e2e1

(N) (t)) ∑
n4n3n2n1

ψe4n4

* ψe3n3
ψe2n2

ψe1n1

*
G n4n3,n2n1

(N) (t).

(123)

Since the population and coherence dynamics of eigenstates
are decoupled in the secular approximation, this Green’s
function assumes the form of eq 31.

The response functions assume a particularly compact form
in the frequency domain (eq 41). For kI, we obtain from eq
115

RkI

(QP)(Ω3, Ω2, Ω1)) 2( i
p)3 ∑

e4e3e2e1

∑
e′e′′

µe4

* µe3
µe2

µe1

* ×

Ge4
(Ω3)Γe4e′,e3e′′(Ω3 + εe′ + iγe′) ×

G e3e′′
(0) (Ω3 + εe′ + iγe′)G e′′e′,e2e1

(N) (Ω2)Ge1

* (-Ω1). (124)

The time-domain response functions RkI
(QP)(t3, t2, t1) can be

calculated by using the inverse transform (eq 317). We note
that the Fourier transforms with respect to t1 and t2 only
involve single Green’s functions and are trivial. We can thus
derive simple expressions for mixed representation such as
RkI

(QP)(Ω3, t2, Ω1). When incoherent exciton transport is ne-
glected, we can set G e4e3,e2e1

(N) (t) ) δe4e2
δe3e1

Ge2
(t)Ge1

* (t) and
recover the coherent dynamics result (eq 89).

Starting from eqs 116 and 117, we similarly obtain the
response functions for the other two techniques

RkII

(QP)(Ω3, Ω2, Ω1)) 2( i
p)3 ∑

e4e3e2e1

∑
e′e′′

µe4

* µe3
µe2

* µe1
×

Ge4
(Ω3)Γe4e′′,e3e′(Ω3 + εe′′ + iγe′′) ×

G e3e′
(0) (Ω3 + εe′′ + iγe′′)G e′e′′,e1e2

(N) (Ω2)Ge1
(Ω1) (125)

and

RkIII

(QP)(Ω3, Ω2, Ω1)) 2( i
p)3 ∑

e4e3e2e1

µe4

* µe3

* µe2
µe1

×

[Γe4e3,e2e1
(Ω2)G e2e1

(0) (Ω2)-

Γe4e3,e2e1
(Ω3 + εe3

+ iγe3
)G e2e1

(0) (Ω3 + εe3
+ iγe3

)] ×

Ge4
(Ω3)Ge1

(Ω1)Ge3

* (Ω2 -Ω3). (126)

Combining eqs 40 and 41 with the response functions (eqs
124-126) and using the results of section 5, we obtain our
final QP expressions for the multidimensional signals:

Figure 9. Same as Figure 8 but including exciton transport (eqs
115-117). Single solid line represents G(t) propagation, double
line is either G (when both lines point to the same direction) or GN

(when the lines point to opposite directions), and triple line
represents GZ.
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SkI

(QP)(Ω3, Ω2, Ω1))-2p-3 ∑
e4e3e2e1

∑
e′e′′

(µe4

* ·E4
*(εe4

-ωs))(µe3
·E3(εe3

-ω3)) ×

(µe2
·E2(εe2

-ω2))(µe1

* ·E1
*(εe1

-ω1)) ×
Ge4

(Ω3)Γe4e′,e3e′′(Ω3 + εe′ + iγe′) ×

G e3e′′
(0) (Ω3 + εe′ + iγe′)G e′′e′,e2e1

(N) (Ω2)Ge1

* (-Ω1), (127)

SkII

(QP)(Ω3, Ω2, Ω1))-2p-3 ∑
e4e3e2e1

∑
e′e′′

(µe4

* ·E4
*(εe4

-ωs))(µe3
·E3(εe3

-ω3)) ×

(µe2

* ·E2
*(εe2

-ω2))(µe1
·E1(εe1

-ω1)) ×
Ge4

(Ω3)Γe4e′′,e3e′(Ω3 + εe′′ + iγe′′) ×

G e3e′
(0) (Ω3 + εe′′ + iγe′′)G e′e′′,e1e2

(N) (Ω2)Ge1
(Ω1), (128)

and

SkIII

(QP)(Ω3, Ω2, Ω1))-2p-3 ∑
e4e3e2e1

(µe4

* ·E4
*(εe4

-ωs)) (µe3

* ·E3
*(εe3

-ω3)) ×
(µe2

·E2(εe2
-ω2))(µe1

·E1(εe1
-ω1)) ×

[Γe4e3,e2e1
(Ω2) G e2e1

(0) (Ω2)-

Γe4e3,e2e1
(Ω3 + εe3

+ iγe3
)G e2e1

(0) (Ω3 + εe3
+ iγe3

)] ×

Ge4
(Ω3)Ge1

(Ω1)Ge3

* (Ω2 -Ω3) (129)

These expressions contain fewer terms than their supermolecule
counterparts (eqs 42-50) and allow one to make the ap-
proximations discussed above. The CED limit is obtained by
setting G e4e3,e2e1

(N) (ω) ) δe4e2
δe3e1

[ω - (εe2
- εe1

) +
i(γe2

+ γe1
)]-1, which includes dephasing but no transport.

The MFA is recovered by neglecting transport and using the
MFA scattering matrix, Γ(MFA)(ω) ) V, as discussed in
Appendix E. Equations 127-129 can represent nonbosonic
systems by using the scattering matrix given in Appendix
H. These expressions can be readily applied for infinite
periodic structures; see Appendix I.

The numerical integration of eqs 40 and 18 with the
response functions of eqs 124-126 will be required when
the optical pulses do overlap temporally or when the density
matrix dynamics is nonexponential (as in section 11).
Simulated finite-pulse signals for the FMO light-harvesting
complex are presented in the next section.

10. Applications to the FMO Complex
Photosynthetic light-harvesting complexes found in bio-

logical membranes (see Figure 1) constitute an important
class of chromophore aggregates. Photosynthesis starts with
the absorption of a solar photon by one of the light-harvesting
pigments, followed by transfer of the excitation energy to
the reaction center where charge separation is initiated.4,150,157,158

This triggers a series of electron-transfer reactions, the redox
chain, where ADP is eventually converted into ATP, which
stores chemical free energy.150 The primary step, the absorp-
tion of a photon, takes place in light-harvesting antennae
containing assemblies of pigment molecules that absorb light
in a broad window of the solar spectrum. The transfer of
this excitation toward the reaction center occurs with a

remarkably high (98%) quantum yield.150 The active pig-
ments are various types of chlorophylls (Chl) and bacterio-
chlorophylls (BChl, BChla, and BChlb), which absorb light
in the 600-700 nm and at longer wavelengths,159,160 and
carotenoids, which absorb light at higher frequencies, in the
450-500 nm range.159,161 Most energy transferred to the
reaction center is absorbed by the Chl and BChl molecules,
but there is clear evidence for energy transfer from the
carotenoids to the Chl molecules.162-164 The carotenoids also
act as photoprotective agents by thermally dissipating excess
energy that could otherwise generate harmful photooxidative
intermediates.165,166

Optical properties of several complexes, light-harvesting
complex 1 (LH1) and 2 (LH2) and photosystem 1 (PSI) and
2 (PSII), have been extensively studied using linear and
nonlinear optical techniques, revealing ultrafast exciton
dynamics and transport pathways.4,37,158,167 Understanding the
interaction of these complexes with light is crucial for
unraveling their function and developing new generations
of artificial light-harvesting and photonic devices and poses
major theoretical and experimental challenges. Multidimen-
sional spectroscopy provides an invaluable tool for unravel-
ing and quantifying the photophysics of the photosynthetic
apparatus.40,41,81 These techniques can pinpoint couplings
between pigment molecules70 and can directly probe excita-
tion energy transfer timescales.

The FMO complex168,169 in green sulfur bacteria is the first
light-harvesting system whose X-ray structure has been
determined (Figure 1). The FMO protein is a trimer made
of identical subunits, each containing 7 BChl pigments and
no carotenoids. This system has been extensively studied by
1D techniques such as absorption and linear and circular
dichroism.170,171 The spectra were simulated using the exciton
model (eq 58) whose parameters (site energies, εm, and
interactions, Jmn) were fitted to experiment.40,170,171 Subse-
quent 2D optical spectroscopy40,41,81 revealed that the excita-
tion energy is transferred toward the reaction center using
specific pathways; the energy does not simply cascade
stepwise down the energy ladder.40 By recording 77 K 2D
spectra vs t2, Engel et al.41 observed 600 fs quantum beating
in both the shape and intensity of the peaks, indicating long-
lived coherences. The role of exciton delocalization and
coherence in energy transport in photosynthesis is an
intriguing issue: if they survive at room temperature, they
could allow for fast transport and improve the efficiency of
energy funneling to the reaction center. Pulse sequences that
can distinguish between coherent quantum oscillations and
incoherent energy dissipation during t2 will be presented in
section 13.81

Multidimensional spectroscopy has also been applied to
other light-harvesting systems: Lee et al. measured coherence
dynamics in the bacterial reaction center,172 and Zigmantas
et al. generated a 2D signal of photosynthetic antenna LH3
(27 chromophores) in purple bacteria.173 The reaction center
of purple bacteria absorbs light in two well-separated bands
at 800 and 850 nm. It is surrounded by a complex of BChl
molecules forming a ringlike core light-harvesting antennae
LH1.174,175 The membrane LH1 is surrounded by peripheral
light-harvesting antennae LH2 and LH3. LH2 exists in
different sizes. In Rps. acidophila, it is made of two
concentric rings containing 18 and 9 BChl molecules,
respectively, while in Rps. molischianum, the two rings have
16 and 8 BChl molecules, respectively.174 The two rings are
connected by carotenoids.174,176 More details about the
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structure and the interactions of these light-harvesting
complexes are given in refs 4, 174, and 177. Many theoretical
studies of 1D spectroscopy of this system have been carried
out. Schröder et al.178,179 tested various methods for calculat-
ing the linear absorption lineshapes, Jang and Silbey180,181

developed line-shape theories for single-molecule absorption,
and Dahlbom et al.182 calculated transition-absorption of the
B850 ring of LH2. The pump-probe and photon echo signals
as well as superradiance were covered in our group.34,130,183-185

Pullerits et al. have estimated the average delocalization
length of exciton in LH2 from the simulated and experi-
mental pump-probe spectra.186,187 They showed that the LH2
excitons are delocalized on 4 chromophores on average.

Photosystem I (PSI) is the largest photosynthetic system
with known structure containing 96 BChl and 22 	-caro-
tenoid molecules.16 Six of the BChl molecules form the
electron transfer chain and constitute the reaction center. Ten
“red” BChls absorb light at lower energies than the others,
including the reaction center. Their precise role in energy
transport is under debate.188 Photosystem II (PSII) is made
of a light-harvesting antenna, LHCII, which contains 8
BChla, 6 BChlb, and 4 	-carotenoids,189 and its reaction
center.190 Numerous experimental and theoretical 1D spec-
troscopic studies have been carried out on PSI37,38,188,191 and
PSII.192-195 These include absorption, linear and circular
dichroism, and pump-probe.

The peak linewidths for the kI technique at t2 ) 0 reveal
the homogeneous and inhomonegeous dephasing rates.70,196

Variation of the cross-peak pattern with t2 allows one to
monitor pigment interactions and excitation energy transfer
timescales.40,81 During t2, the system’s density matrix
evolves either in the first excited-state manifold, e, where
population transport and coherent evolution take place,
or in the ground state, as seen from the Feynman diagrams
(Figure 4). Various quantum master equations for the
evolution of the reduced density matrix have been applied
to study energy transport in photosynthetic systems.120,178

These include the Redfield theory,120 a modified Redfield
theory,185,197 and some non-Markovian variants.178,198 Other
studies199 have demonstrated the differences between the
Bloch model and the Redfield theory for the description of
relaxation processes in LH2. Short-time, low-temperature,
dynamical features of the pump-probe spectra of LH2 were
explained using a simplified polaron model.200 Exciton
annihilation has been shown to strongly affect nonlinear
optical signals.201-203

Various levels of theory developed in the earlier sections
will be applied below to simulate 2D signals of the FMO
complex of Chlorobium tepidum. Its chromophore config-
uration is sketched in Figure 10. The BChl molecules of the
FMO monomer are modeled as 7 coupled chromophores.
The Hamiltonian of eq 58 is used with K ) 0 and ∆ f ∞

(two-level chromophores). εm, Jmn, and µn are taken from
ref 81. The overdamped Brownian oscillator spectral density
(eq 372) with timescale Λ-1 ) 100 fs and interaction strength
λ ) 35 cm-1 is used for the bath in the Markovian limit.
The linear absorption, calculated using eq 269 shown in
Figure 11 has five peaks labeled a-e. The d and e bands
contain unresolved doublets.

10.1. Simulated Signals at the CED and MFA
Levels

We start by neglecting transport and using the quasiparticle
approach (eqs 127-129) with the scattering matrix eq 387
(MFA) or eq 92 (CED). We first assume broad pulse
bandwidths, setting the pulse spectral envelopes to 1.

The MFA and CED SkI
signals at t2 ) 0 are compared in

Figure 12. Since the two approaches are identical in the
single-exciton space, the diagonal section, which shows the
single excitons, is similar and reflects absorption peaks.
However, their amplitudes are different.

The large differences appear mostly in off-diagonal
regions, where double-exciton properties show up. In the
MFA, the two excitons evolve independently, and their
correlations are neglected. Peak positions, which reflect the
double-exciton energies, are then given by the combinations
of single-exciton energies εe + εe′. The CED scattering
matrix, in contrast, induces additional shifts of the resonant
positions coming from exciton-exciton interactions.

A similar comparison is shown in Figures 13 and 14
for the double quantum coherence SkIII

signal.83,205,206 It
projects the double excitons directly on the Ω2 axis,
making it very sensitive to the fine features of the double-
exciton manifold. The MFA provides an approximation
to thedouble-excitonmanifoldbyneglectingexciton-exciton
correlation effects. The two peak patterns are mostly
different in the higher-energy region (Ω2 >24 800 cm-1),
where the MFA signal is featureless but the CED shows
well-resolved peaks.

The remainder of this section shows simulated kI signals
that go beyond the CED to include transport during t2 at the
secular Redfield theory level.

10.2. Dissecting Energy-Transfer Pathways by
Using Finite-Pulse Bandwidths

The 2D signals were calculated using eq 127 and include
transport during t2. We used Gaussian pulse envelopes,

Figure 10. FMO complex structure of Chlorobium tepidum (left)
and its simulated linear absorption (right), taken from ref 81 (eq
158).

Figure 11. Linear absorption spectrum for FMO of Chlorobium
tepidum. The 5 identifiable peaks a-e, where a is the lowest-energy
absorption peak and e is the highest. The power spectra of the three
excitation pulses (Wb, Wd, and We) used to calculate the signal in
Figure 15. Pulse We excites band e only, pulse Wd excites band d
only, and pulse Wb is broad and excites all bands.
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Ej(ω))Ej e-(ω ⁄ σj)2
. (130)

In Figure 15, we show three finite-pulse simulations that
demonstrate how a proper choice of the pulse envelopes,
using information from the absorption spectrum, can be
used to reveal the energy-transfer pathways, without any
prior knowledge of the system’s Hamiltonian and param-
eters.

Experiment A (top row) uses four broad pulses, whose
power spectra are given by Wb in Figure 11 and cover the
entire exciton band. At t2 ) 0 (left column of Figure 15),
the kI signal is dominated by two diagonal peaks corre-
sponding to bands b and d. The cross-peaks are weak. As t2

is increased, relaxation toward lower energies is observed;
a higher-energy photon creates an excited state that decays
toward lower-energy excited states, and the system emits at

lower energies. At t2 ) 1 ps, cross-peaks start to appear
below the diagonal. The cross-peak at (-Ω1 ) d, Ω3 ) b)
shows that some excitation energy of the d band has been
transported to b. The right panel (t2 ) 5 ps) shows additional
cross-peaks. The (d, b) and (d, a) peaks indicate that energy
from the d band has migrated to both the b and a bands.
The absence of a diagonal (d, d) peak indicates that most of
the initial exciton energy of the d band has decayed to lower-
energy bands. The (b, a) peak is induced by energy transfer
from b to a. Energy transport to the lowest excited state is
completed in a few picoseconds. All energy-transfer path-
ways contribute to the signal; however, some are clearly
dominant.

In Figure 15B, the first two pulses are narrow (We in Figure
11; σ1/2 ) 50 cm-1 bandwidth) and selectively excite band
e, and the last two pulses are broad (Wb). At t2 ) 0 ps, the
pulses select peaks such that -Ω1 lies in band e. The
dominant diagonal peaks at (b, b) and (d, d) fall out of the
pulse bandwidth, making weak cross-peaks more visible. At
t2 ) 1 ps, the population created in band e has been
transferred to b, c, and d (as seen from the larger (e, d), (e, c),
and (e, b) cross-peak intensities) but not to the lower a band
(no (e, a) cross-peak). After 5 ps, we see four cross-peaks
indicating that all lower bands are populated, but the
population of the higher energy states, especially d, is very
small (weaker (e, d) and (e, c) cross-peaks). It is difficult to

Figure 12. Im SkI
(QP)(Ω3, t2, Ω1) signal (imaginary part) in the MFA

and CED for FMO at t2 ) 0 ps.

Figure 13. |SkIII
(QP)(t3, Ω2, Ω1)| signal in the MFA and CED for FMO

at t3 ) 1 fs and t3 ) 200 fs.

Figure 14. |SkIII
(QP)(Ω3, Ω2, t1)| signal in the MFA and CED for FMO

at t1 ) 0 fs.

Figure 15. 2D signal |SkI
(QP)(Ω3, t2, Ω1)| for the three experiments

A, B, and C, as described in the text. (Top row, A) broad pulses;
(Middle row, B) the first two pulses select the e band; (Bottom
row, C) the first two pulses select the d band. The black line marks
the diagonal. The pulses are shown in Figure 11.

Figure 16. Absorption spectrum for FMO dissected into its
seven chromophores by the last interaction with the field (eq
133). The contribution from each chromophore is given by a
different color.
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observe this pathway with broadband pulses (Figure 15A),
since it is an order of magnitude weaker than the dominant
one.

In Figure 15C, the first two pulses are narrow (Wd in Figure
11) and selectively excite the d band, but the last two pulses
are broad. At t2 ) 0 ps, only the diagonal (d, d) peak is
observed. As in Figure 15B, no significant excitation has
been transferred to the lowest-energy band in 1 ps (no (d, a)
cross-peak). What is different here is that only two bands
are populated during the entire energy-transfer process
(shown as the cross-peaks (d, b) and (d, a), the cross-peak
at (d, c) never appears). The c band is not populated at t2 )
5 ps even though its energy is lower than the original
excitation, suggesting that the c and d bands correspond to
localized excitations residing on different (and weakly
coupled) sites. Similar conclusions were reached by Brixner
et al.40 who argued, by analyzing the exciton eigenvectors

of a model system similar to ours, that the energy does not
simply relax stepwise down the energy ladder.

10.3. Dissecting the Response Functions in Real
Space

The third-order response function, whether calculated using
the supermolecule or the quasiparticle approach, contains a
product of four dipole moments associated with the various
interactions with the fields. In order to analyze the NEE RkI

(QP)

response function, eq 124, we shall transform the dipoles
back to real space using µe ) Σnψe,n µn with the single-
exciton eigenstates ψe,n defined in section 9. We further single
out the n4 sum and write

RkI

(QP)(Ω3, Ω2, Ω1))∑
n4

RkI,n4

(QP)(Ω3, Ω2, Ω1), (131)

with

RkI,n4

(QP)(Ω3, Ω2, Ω1))-2iµn4

* ∑
e4

ψe4n4
∑

e3e2e1

∑
e′e′′

µe3
µe2

µe1

* ×

Ge4
(Ω3)Γe4e′,e3e′′(Ω3 + εe′ + iγe′) ×

G e3e′′
(0) (Ω3 + εe′ + iγe′)G e′′e′,e2e1

(N) (Ω2)Ge1

* (-Ω1). (132)

RkI, n4
(QP) gives the signal generated at site n4. By varying t2, we

can further find the sites into which excitation energy flows,
thus characterizing the population transport pathways and
timescales in real space. Monitoring the energy transport in
real-space is of particular interest in photosynthetic antennae,
where the energy must eventually be funneled into specific
sites (the reaction center).

Figure 17. RkI,n4
(QP)(Ω3, t2, Ω1) signal (eq 132) for the FMO light-

harvesting complex at t2 ) 0 ps. (Left column) The imaginary part
of the response function; (Right column) the absolute value. The
signal is dominated by chromophores 4, 5, 6, and 7 (Figure 10),
which also dominate the two strongest bands (b and d) of the
absorption spectrum. Chromophores 2 and 3 do not contribute
significantly and were omitted. Color code is the same as in Figure
15.

Figure 18. Same as Figure 17 but at t2 ) 10 ps. The signal is
dominated by chromophores 3 and 4 (and a small contribution of
7), onto which the lowest excited states (3) and the second lowest
excited states (4 and 7) are delocalized.
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A similar dissection procedure could be applied by singling
out the third, second, or first interactions with the field (i.e.,
restricting the sums in eq 131 over n3, n2, and n1, respec-
tively) and calculating the contributions of each site to the
various interactions. The linear absorption signal can be
similarly dissected by singling out the second interaction (see
eq 269):

κa,n2
(ω) ∝ ω∑

e

ψn2,e µn2

* µe

γeg

(ω-ωeg)
2 + γeg

2
.

(133)

It gives the contribution of site n2. The dissected absorption
spectrum of FMO displayed in Figure 16 shows that the
lowest-energy excited state (band a) is localized on chro-
mophore 3, band b is on chromophores 4 and 7, and band d
is delocalized over chromophores 5 and 6.

The RkI, n4
(QP) (Ω3, t2 ) 0, Ω1) spectrum displayed in Figure

17 is dominated by chromophores 1, 4, 5, 6, and 7. As can
also be seen from the absorption dissection, the (b, b) peak
is delocalized over chromophores 4 and 7. The (d, d) peak
is delocalized over sites 5 and 6, while (c, c) is localized on
chromophore 1. For t2 ) 10 ps (Figure 18), the signal is
generated at chromophores 3, 4, and 7. This is to be expected
since excitation energy flows in a downhill path. Band a is
localized on chromophore 3. Hence, the cross-peaks (d, a)
and (b, a) are dominated by RkI,3. The second lowest energy
band, b, is still populated at t2 ) 10 ps. Hence, RkI,4 and RkI,7

still contribute to the response function since the b band is
delocalized across sites 4 and 7. These contributions contain
the two peaks at (b, b) (the b band is still populated) and
(d, b) (exciton transfer from d to b).

This dissection analysis provides similar information to
the finite pulse envelope techniques discussed above. The
difference is that here we select the chromophores, whereas
the finite envelopes select the exciton eigenstates. The two
are close when the eigenstates are localized. One can achieve
a similar dissection using a broad band for the first three
pulses and a narrow band for the last pulse.

This dissection analysis provides information that goes
beyond the eigenvalues and the eigenvectors: it can be used
to highlight specific energy-transfer pathways and timescales

(as was done in section 10.2 using finite pulses) and find
the dephasing rates of coherences between chromophores.
Exciton delocalization can be characterized by the participa-
tion ratio,182,207,208

Le )
1

∑
n

|ψen|
4
, (134)

Le varies between 1 and N for an N-chromophore aggregate
and is a measure of the effective number of chromophores
contributing to the exciton e. For FMO with the Hamiltonian
parameters of ref 81, the participation ratios for the seven
exciton states are (in increasing order of energy): L1 ) 1.3,
L2 ) 2.3, L3 ) 1.6, L4 ) 1.8, L5 ) 2.4, L6 ) 2.8, and L7 )
1.6. As expected, the lowest-energy exciton is localized on
a single site (chromophore number 3). The other excitons
are more delocalized, especially excitons 2, 5, and 6, which
are delocalized on chromophores 4 and 7 (exciton 2), 5 and
6 (exciton 5), and 5 and 6 (exciton 6). Another useful
measure is the coherence length,70

LF(t))
(∑

nm

|Fmn(t)|)
2

N∑
nm

|Fmn(t)|
2
, (135)

which reveals the number of chromophores on which the
exciton density matrix is delocalized along the antidiagonal
direction.

The dissection analysis can be used to extract some
additional measures of exciton-state delocalization. Let us
consider the following quantity

Ld(Ω3, t2, Ω1))∑
n4

|RkI,n4

(QP)(Ω3, t2, Ω1)| -

|RkI

(QP)(Ω3, t2, Ω1)|, (136)

where RkI,n4
(QP)(Ω3, t2, Ω1) is the contribution of the n4th chro-

mophore to the response function. Ld will vanish for regions
dominated by a single chromophore and will grow with the
degree of delocalization. In Figure 19, we display Ld at t2 )
0 and t2 ) 10 ps. Obviously the diagonal peaks are localized
on very few chromophores. This can be anticipated from
our analysis of the linear absorption shown in Figure 16.
The cross-peaks in Figure 19 for t2 ) 10 ps are more
delocalized because they result from population transfer
facilitated by exciton delocalization (c.f., eq 370).

10.4. Signatures of Quartic Exciton Couplings
The quadratic excitonic couplings Jmn in eq 58 correspond

to the “strong J coupling” regime in homonuclear NMR.
Chromophores coupled through negative (positive) couplings
form J (H) aggregates. The quartic couplings K are analogous
to the Darling-Dennison coupling209 in infrared spectroscopy
and are known as the “weak (heteronuclear) coupling” of
heteronuclear NMR. A detailed comparison between NMR
and multidimensional infrared and optical spectroscopy was
given in refs 57 and 58. The FMO simulations presented so
far assumed that each chlorophyll is a two-level chro-
mophore, setting Kmn ) 0 and ∆m f ∞. This anharmonic
penalty prevents two excitations from residing on the same
site.

Here we study the possible signatures of K.210 The energy
of two-exciton states for excitations on sites m and n (i.e.,
Em,n ) 〈Φ fmn

|ĤS|Φfmn
〉, with Φfmn

defined in section 6) is

Figure 19. (Left column) Absolute value of the response function,
|RkI

(QP)(Ω3, t2, Ω1)| (eq 124). (Middle column) The sum of the absolute
value of the dissected response function, ∑n4

|RkI, n4
(QP) (Ω3, t2, Ω1)| (eq

132). (Right column) The delocalization length, Ld(Ω3, t2, Ω1) (eq
136). The delay time t2 ) 0 (top) and 10 ps (bottom). Color code
is the same as in Figure 15.
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Em,np
-1 ) εm + εn +Kmn(1- δmn)+∆mδmn . (137)

The K coupling implies that double excitations on neighbor-
ing sites have lower (negative K; exciton attraction) or higher
(positive K; exciton repulsion) energy compared to the sum
of energies of the two single excitations. In the NEE, K enters
solely through the scattering matrix. For finite Kmn, the
coherent time-evolution of the Y variables will show
resonances shifted by Kmn couplings.

To demonstrate the possible effects of these off-diagonal
quartic couplings, we have switched on the quartic coupling
between the fourth and fifth chromophores in FMO. These
sites are chosen because they contribute significantly to the
strong b and d absorption bands (Figure 11), as can be easily
seen from the dissected linear absorption spectrum (Figure
16). This is a simple illustration of possible signature of the
K45 coupling, which we use as a free parameter. Figure 20
depicts the kI signals calculated with the NEE for K45 ) K54

) (300 cm-1 and t2 ) 0.
Effects of the quartic couplings are most easily explained

by looking at the SOS expressions for the response function
of a dimer,

RkI

(SOS)(Ω3, t2 ) 0, Ω1))RkI

(GSB)(Ω3, t2 ) 0, Ω1)+

RkI

(ESE)(Ω3, t2 ) 0, Ω1)+RkI

(ESA)(Ω3, t2 ) 0, Ω1), (138)

where

RkI

(GSB)(Ω3, t2 ) 0, Ω1))RkI

(ESE)(Ω3, t2 ) 0, Ω1))

-( i
p)3[ |µ+|4

(Ω3 - ε++ iγ+)(Ω1 + ε++ iγ+)
+

|µ-|4

(Ω3 - ε-+ iγ-)(Ω1 + ε-+ iγ-)
+

|µ-|2|µ+|2

(Ω3 - ε++ iγ+)(Ω1 + ε-+ iγ-)
+

|µ-|2|µ+|2

(Ω3 - ε-+ iγ-)(Ω1 + ε++ iγ+)] , (139)

RkI

(ESA)(Ω3, t2 ) 0, Ω1))

( i
p)3[ (µ+

2 µf,+
2 + µ-µf,-µ+µf,+)

(Ω3 - ε-+K+ iγf,+)(Ω1 + ε++ iγ+)
+

(µ-
2 µf,-

2 + µ-µf,-µ+µf,+)

(Ω3 - ε++K+ iγf,-)(Ω1 + ε-+ iγ-)] , (140)

where µ( are the transition dipoles between the ground and
one of the single-excited states (“+” and “-”). They are
related to the dipoles in the local basis by the following
transformation: µ( ) Ψ(,1µ1 + Ψ(,2µ2. The dimer model
has a single doubly excited state, f, with energy ε+ + ε- +
K, and the transition dipole between the singly-excited and
the double-excited state is µf,( ) Ψ(,1µ2 + Ψ(,2µ1. The two
terms of eq 140 are ESA contributions. The quartic coupling
enters only in these terms.

As can be seen from eq 139, the GSB and ESE contribu-
tions to the cross-peaks interfere with the ESA. Hence, the
cross-peaks at (ε+, ε-) and (ε-, ε+) interfere destructively.
As K is increased, the ESA peaks are shifted along Ω3 by K
and the cross-peaks no longer cancel out, creating a doublet.

A similar splitting of the cross-peaks is expected in
larger aggregates. This explains the trends seen in Figure
20. When K45 ) 0, the diagonal peaks (b, b) and (d, d)
dominate. As K45 is turned on, the GSB and ESE
contributions to the cross-peaks shift spectrally and no
longer interfere with the ESA and the cross-peaks at (b,
d) and (d, b) appear. Furthermore, the ESA cross-peak
can be observed as weaker peaks shifted along Ω3 (these
regions are circled in Figure 20). These cross-peaks appear
at (b, d + K45) and (d, b + K45).

Signatures of the off-diagonal quartic couplings are also
manifest for t2 > 0. In Figure 21, we show the kI response
function for different K45 as in Figure 20 but for t2 ) 10
ps. The b band is still populated even after long t2. This
is evident from the large diagonal peak in the b region
for K45 ) 0, shown in the top panel of Figure 21. Hence,
the fourth site is populated since band b corresponds to
an exciton localized mainly on this site. For K45 ) -300
cm-1, the doubly excited Φf45

state is energetically favored.
The excitation energy, absorbed in the b or d band, which
relaxes to b during t2, can re-emit from the d band, leading
to a high-energy diagonal peak and corresponding cross-
peaks. Since the doubly excited state Φf45

is blue-shifted
when K45 ) +300 cm-1, these new features are weaker
in the second row of Figure 21. In this case, the
anharmonic coupling shifts the ESA contributions for the
high-energy diagonal peak (d, d) and for the (b, d) cross-
peak along Ω3.

11. Interplay of Transport and Slow Fluctuations
in the Third-Order Response

In section 7, we have derived quasiparticle expressions
for the exciton-response functions by assuming fast fluctua-
tions of the bath, which justifies the Markovian approxima-
tion for relaxation. This leads to a Pauli rate equation for
populations and dephasing of exciton coherences. The
supermolecule approach, in contrast, can describe the
coupling to a bath with a broad range of fluctuation
timescales. This higher-level treatment requires the explicit
calculation of two-exciton eigenstates, which is only feasible
in small aggregates. Fortunately, the detailed bath dynamics
can be typically observed only in small systems where the
electronic spectra are not too congested.

It was shown in section 3 that the resonant Liouville space
pathways can be classified into ESE, ESA, and GSB types.
The secular approximation for the Green’s function G(N)

additionally decouples coherences and populations. The
response function may then be partitioned into contributions
of coherences C and populations P during t2.

The resonant contributions to each technique are given
by the Feynman diagrams of Figures 4-7. In the following
expressions, we will use the same labeling for the various
terms used in the diagrams: ia, ii, iiia, iva, v, and via are
purely population contributions, and ib, iiib, ivb, vib, vii,
and viii are purely coherence contributions.

The kI response function will be recast in the form:

RkI,ia
(t3,t2, t1))-ip-3θ(t1)θ(t2)θ(t3)∑

e,e′
µge′ µe′g µeg µge ×

G e′e′,ee
(N) (t2) exp[-i�e′gt3 - i�get1 +�e′e

(ia)(t3, t2, t1)], (141)
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RkI,ib
(t3, t2, t1))-ip-3θ(t1)θ(t2)θ(t3)∑

e,e′

e*e′

µge′ µeg µe′g µge ×

exp[-i�e′gt3 - i�e′et2 - i�get1 +�e′e
(ib)(t3, t2, t1)], (142)

RkI,ii
(t3,t2, t1))-ip-3θ(t1)θ(t2)θ(t3)∑

e′,e
µge′µe′gµegµge ×

exp[-i�e′gt3 - i�get1 +�e′e
(ii)(t3, t2, t1)], (143)

RkI,iiia
(t3,t2,t1)) + ip-3θ(t1)θ(t2)θ(t3)∑

e,e′,f
µe′f µfe′ µeg µge ×

G e′e′,ee
(N) (t2) exp[-i�fe′ t3 - i�get1 +�fe′e

(iiia)(t3, t2, t1)], (144)

RkI,iiib
(t3, t2, t1)) + ip-3θ(t1)θ(t2)θ(t3)∑

e,e′,f

e*e′

µef µfe′µe′g µge ×

exp[-i�fet3 - i�e′et2 - i�get1 +�fe′e
(iiib)(t3, t2, t1)]. (145)

As in section 4, we define the complex transition frequen-
cies

�ab ≡ εa - εb - i(τa
-1 + τb

-1) ⁄ 2, (146)

where τa is the lifetime of state a. �(t3, t2, t1) are multipoint
line-shape functions induced by bath fluctuations. These are
responsible for all other dephasing mechanisms beyond the
lifetimes τ.

Similarly, we recast the kII response in the form:

RkII,iva(t3, t2,t1))-ip-3θ(t1)θ(t2)θ(t3)∑
e,e′

µge′ µe′g µge µeg ×

G e′e′,ee
(N) (t2) exp[-i�e′gt3 - i�egt1 +�e′e

(iva)(t3, t2, t1)], (147)

RkII,ivb(t3, t2, t1))-ip-3θ(t1)θ(t2)θ(t3)∑
e,e′

e*e′

µge µe′g µge′ µeg ×

exp[-i�egt3 - i�ee′t2 - i�egt1 +�e′e
(ivb)(t3, t2, t1)], (148)

RkII,v
(t3,t2, t1))-ip-3θ(t1)θ(t2)θ(t3)∑

e′,e
µge′ µe′g µge µeg ×

exp[-i�e′gt3 - i�egt1 +�e′e
(v)(t3, t2, t1)], (149)

RkII,via(t3,t2, t1)) + ip-3θ(t1)θ(t2)θ(t3)∑
e,e′f

µe′fµfe′µgeµeg ×

G e′e′,ee
(N) (t2) exp[-i�fe′t3 - i�egt1 +�fe′e

(via)(t3, t2, t1)], (150)

RkII,vib(t3,t2, t1)) + ip-3θ(t1)θ(t2)θ(t3)∑
e,e′,f

e*e′

µe′f µfe µge′µeg ×

exp[-i�fe′ t3 - i�ee′ t2 - i�egt1 +�fe′e
(vib)(t3, t2, t1)]. (151)

Finally, kIII is composed of ESA1 and ESA2 (both are
coherent contributions since populations are not created in
kIII):

RkIII,vii(t3,t2, t1)) + ip-3θ(t1)θ(t2)θ(t3)∑
e,e′,f

µe′f µge′ µfe µeg ×

exp[-i�fe′t3 - i�fgt2 - i�egt1 +�fe′e
(vii)(t3, t2, t1)], (152)

RkIII,viii(t3,t2, t1))-ip-3θ(t1)θ(t2)θ(t3) ∑
e,e′,f

µge′ µe′fµfeµeg ×

exp[-i�e′g t3 - i�fgt2 - i�egt1 +�fe′e
(viii)(t3, t2, t1)]. (153)

In the coming sections, we shall derive microscopically
and extend all quantities appearing in the phenomenological
expressions of section 4. The results of three approximations
will be recast in the form of eqs 141-153 and will only
differ by the phase functions � that will be given by eqs
166, 177, and 179. The response function expressions of
section 4 are recovered by setting all � ) 0 and assuming
that the dephasing is caused by finite lifetimes + pure
dephasing in the Markovian approximation.

11.1. Coherent Exciton Dynamics; Diagonal
Gaussian Fluctuations with Arbitrary Timescale

We assume that the system is described by the Hamiltonian
equation (eq 94) with the system part in the form of eq 2
and the harmonic bath model given by eq 95. We partition

Figure 20. Effects of the off-diagonal quartic coupling, K45, on
the kI spectra for t2 ) 0. (Left column) The imaginary part of the
response function; (Right column) absolute value. From top to
bottom, K45 ) K54 ) 0, +300, -300 cm-1. Color code is the same
as in Figure 15.

Figure 21. Same as in Figure 20, but at t2 ) 10 ps.
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Ĥ ) ∑V|V〉ĤV〈V|, where the bath operator ĤV characterizes
the bath-induced perturbation of the energy of system state
V,

ĤV ) p
-1〈V|Ĥ |V〉 ) εV + q̂VV + ĤB, (154)

q̂VV is a collective bath coordinate:

q̂VV ≡p-1〈V|ĤSB|V〉 )∑
R

dVV,R(âR
† + âR). (155)

q̂VV induces the frequency fluctuations of state υ with respect
to the reference Hamiltonian of state a:

q̂VV
(a)(t) ≡ eip-1Ĥatq̂VV e-ip-1Ĥat. (156)

Off-diagonal fluctuations responsible for population re-
laxation are neglected. The arguments presented here hold
in the eigenstate-basis, where all off-diagonal elements of
the Hamiltonian vanish. However, for coupled molecular
aggregates, both diagonal and off-diagonal fluctuations in
real-space representation lead to transport, since they result
in nonzero off-diagonal Hamiltonian fluctuations in an
arbitrary reference basis set. This model was studied in refs
100 and 112. Here, we present the final expressions for the
exciton model of Figure 3. In this subsection, unlike the rest
of the review, we do not make the RWA for the response
function. This allows for more compact expressions. The
RWA is only invoked for the final results (eq 166).

The linear and third-order response functions can be
calculated exactly from eqs 12 and 15 using the second-
order cumulant expansion.52,112 This is known as the CGF:
cumulant expansion of Gaussian fluctuations.

The linear response function is given by

R(1)(t)) i
p

[J(t)- J
*(t)], (157)

where J(τ2 - τ1) ) 〈µ̂(τ2)µ̂(τ1)〉 is the two-point dipole
correlation function. The angular brackets imply equilibrium
statistical averaging over the bath. J is calculated exactly for
this model:

J(t))∑
ab

µab µbaFa exp[-iωbat-

gbb(t)- gaa(t)+ gab(t)+ gba(t)]. (158)

Here, Fa is the equilibrium population of state a, and we
have introduced the line-shape function

gVV′(t))∫0

t
dτ2∫0

τ2 dτ1CVV′(τ2 - τ1). (159)

CVV′(τ2 - τ1) ≡ 〈 q̂VV
(g)(τ2)q̂V ′V ′

(g) (τ1)〉 is the correlation function
of bath fluctuations whose time evolution is given by the
ground-state Hamiltonian. The line-shape function can be
alternatively recast in terms of the spectral density,

CVV′
′′ (ω)) 1

2∫0

∞
dt exp(iωt)〈[q̂VV

(g)(t), q̂V′V′
(g) (0)]〉;

(160)

see eq 342 and 353. Its symmetries and other properties are
summarized in Appendix F. We then have

gVV′(t))∫ dω
2π

CVV′
′′ (ω)

ω2
[coth (	pω2 )(1- cos ωt)+

i sin ωt- iωt]. (161)
The cumulant expansion similarly gives for the third-order

response function,

R(3)(t3, t2, t1)) ( i
p)3

[F(t1, t1 + t2, t1 + t2 + t3, 0)+

F(0, t1 + t2, t1 + t2 + t3, t1)+
F(0,t1, t1 + t2 + t3, t1 + t2)+
F(t1 + t2 + t3, t1 + t2, t1, 0)]+ c.c. , (162)

where

F(τ4, τ3, τ2, τ1)) 〈µ̂(τ4)µ̂(τ3)µ̂(τ2)µ̂(τ1)〉 (163)

is the four-point correlation function of the dipole operator
in the Heisenberg picture (because we did not select pathways
by invoking the RWA, R(3) is now independent of the
wavevector ks). Expansion in the exciton eigenstates yields

F(τ4, τ3, τ2, τ1)

) ∑
dcba

Faµadµdcµcbµba exp[-i(ωdaτ43 +ωcaτ32 +

ωbaτ21)+ φdcba(τ4, τ3, τ2, τ1)], (164)

where φdcba(τ4,τ3,τ2,τ1) is a four-point line-shape function.
For our harmonic bath model, we get

φcbag(τ4, τ3, τ2, τ1))-gcc(τ43)- gbb(τ32)-
gaa(τ21)- gcb(τ42)+ gcb(τ43)+ gcb(τ32)-
gca(τ41)+ gca(τ42)+ gca(τ31)-gca(τ32)-

gba(τ31)+ gba(τ32)+ gba(τ21), (165)

where τij ) τi - τj. The expressions given in ref 100 were
derived in the semiclassical limit, 〈ωab(t)ωab(0)〉 )
〈ωab(0)ωab(t)〉; here, we do not invoke that approximation.24

It is important to note that φ does depend on the ground-
state index g, even though it does not appear explicitly in
the right-hand side (rhs), since all time evolutions are
calculated with the ground-state reference Hamiltonian (eq
160).

By invoking the RWA, we can now select the resonant
contributions in the response function, as warranted for each
technique. The resulting response functions then assume the
form of eqs 141-153 with Ge′e′,ee

(N) (t) ) θ(t)δe′e and no lifetime
broadening τ-1 ) 0. The phase functions are given by

�ee
(ia)(t3, t2, t1) ) φegeg

* (t1, t1 + t2 + t3, t1 + t2, 0),

�e′e
(ii)(t3, t2, t1) ) φe′geg

* (t1 + t2, t1 + t2 + t3, t1, 0),

�fee
(iiia)(t3, t2, t1) ) φefeg

* (t1, t1 + t2, t1 + t2 + t3, 0),

�e′e
(ib)(t3, t2, t1) ) φe′geg

* (t1, t1 + t2 + t3, t1 + t2, 0),

�fe′e
(iiib)(t3, t2, t1) ) φe′feg

* (t1, t1 + t2, t1 + t2 + t3, 0),

�ee
(iva)(t3, t2, t1) ) φegeg(t1, t1 + t2, t1 + t2 + t3, 0),

�e′e
(v)(t3, t2, t1) ) φe′geg(t1 + t2 + t3, t1 + t2, t1, 0),

�fee
(via)(t3, t2, t1) ) φefeg(t1, t1 + t2 + t3, t1 + t2, 0),

�e′e
(ivb)(t3, t2, t1) ) φe′geg(t1, t1 + t2, t1 + t2 + t3, 0),

�fe′e
(vib)(t3, t2, t1) ) φe′feg(t1, t1 + t2 + t3, t1 + t2, 0),

�fe′e
(vii)(t3, t2, t1) ) φe′feg(t1 + t2, t1 + t2 + t3, t1, 0),

�fe′e
(viii)(t3, t2, t1) ) φe′feg(t1 + t2 + t3, t1 + t2, t1, 0).

(166)

The line-shape function can be calculated analytically for
certain models of the bath spectral density. Commonly used
examples are Ohmic, white-noise, and Brownian oscillator
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spectral densities. The overdamped Brownian oscillator
spectral density, defined by

CVV′
′′ (ω)) 2λVV′

ωΛ
ω2 +Λ2

, (167)

where Λ-1 is the fluctuation time scale and λ is the
system-bath coupling strength, provides a simple expression
for the line-shape function for t > 0 (for more details, see
Appendix G),

gVV′(t))
λVV′

Λ
coth(pΛ	 ⁄ 2)[exp(-Λt)+Λt- 1]+

4λVV′Λ
p	 ∑

n)1

∞ e-νnt + νnt- 1

νn(νn
2 -Λ2)

- i
λVV′

Λ
[exp(-Λt)+Λt- 1],

(168)

where 	 ) (kBT)-1 and νn ) (2πn)/(p	) are known as the
Matsubara frequencies. For negative times, we have gVV′(-t)
) gV′V

* (t). The second term is a low-temperature correction,
given by the additional Matsubara oscillators. The third term
is responsible for bath-induced transition frequency shift. In
the high-temperature limit, kBT . pΛ, we have

gVV′ (t))
λVV′

Λ (2kBT

pΛ
- i)(exp(-Λt)+Λt- 1).

(169)

11.2. Response with Population-Transport and
Intermediate-Timescale Bath Fluctuations

The results of the previous section hold for purely diagonal
(frequency) fluctuations with arbitrary timescales; population
relaxation caused by off-diagonal fluctuations has been
neglected. The Redfield equations, on the other hand, include
transport but are limited to fast fluctuations. Here, we present
approximate expressions, which include exciton transport and
intermediate timescale fluctuations.

Dephasing occurs during the delay times t1 and t3,
whereas transport takes place during t2. Typically t1,t3 , t2

(for photosynthetic complexes, population transport occurs
in 500 fs-10 ps, while the coherence time scale is
100-300 fs). We assume an intermediate bath fluctuation
time: fast compared to the transport but slow or compa-
rable to the coherence-dephasing time. In this case, we
can use the doorway-window representation of the
response function and project the doorway and window
functions onto the population/coherence blocks of the
density matrix.184,185,211,212

Populations are created during t2 only in the kI and kII

techniques. We therefore focus on these techniques. We first
recast the response function, eq 15, in the form

R(3)(t3, t2, t1)) ( i
p)3

Tr[W (t3)G (t2)D (t1)], (170)

where D(t) ≡ VG(t)VF̂0 is the doorway exciton wavepacket
prepared by the first two pulses, G(t) describes its propagation
and W(t) ≡ P̂|G(t)V is the window wavepacket, which
represents the detection.

Both kI and kII techniques are described by three Feynman
diagrams (ESA, ESE, and GSB) as shown in Figures 4, 5,
and 7, respectively. We shall separate the response function
accordingly:

R(3) )R(ESE) +R(GSB) +R(ESA). (171)

R(ESE) is given by diagrams i and iv, RGSB is given by ii and
v, and RESA is given by iii and vi in Figures 4 and 5.

Expanding eq 170 in the system eigenstates, we get

R(ESE) ) ( i
p)3 ∑

e4e3e2e1

〈W e4g
lr (t3)G e4e3,e2e1

(N) (t2)×

[D ge1

lr (t1)+D e2g
rl (t1)]〉 , (172)

R(ESA) ) ( i
p)3 ∑

fe4e3e2e1

〈W fe3

ll (t3)G e4e3,e2e1

(N) (t2)×

[D ge1

lr (t1)+D e2g
rl (t1)]〉 , (173)

and

R(GSB) ) ( i
p)3∑

e2e1

〈W e2g
ll (t3)[D ge1

rr (t1)+D e1g
ll (t1)]〉.

(174)

The superscripts of the doorway and window functions indicate
whether interactions occur on the left (l, ket) or right (r, bra)
side of the double-sided Feynman diagram, whereas the
subscripts denote the density matrix elements. The angular
brackets imply statistical averaging over bath fluctuations.

Making the secular approximation for G(N), we can separate
the response function (eqs 172-174), into two terms:

R(3)(t3, t2, t1))RC
(3)(t3, t2, t1)+RP

(3)(t3, t2, t1).
(175)

The coherent contribution, RC
(3), only includes coherences

(e1 * e2, e1 ) e3, e2 ) e4) during t2, and the entire optical
process is completed before a relaxed exciton population
is created. The second term (RP

(3)) only includes populations
(e1 ) e2, e3 ) e4) and represents sequential exciton
transport contributions. This representation thus keeps
track on how populations are created and propagated
during t2. The corresponding response functions have been
formally derived using projection operator techniques;185

here, we present the final results.
We shall evaluate eq 175 using the secular Redfield

relaxation operator. Rc
(3) may then be calculated using the

formalism of section 11.1. Rp
(3) is calculated using projection

operator techniques185 by factorizing the bath averages in
eqs 172-174 into W, G, and D factors. This gives

RP
(3)(t3t2t1)) ( i

p)3
[We′ (t3)G e′e′,ee

(N) (t2)De(t1)+W0(t3)D0(t1)].

(176)

In the first, hopping, term, the doorway function De represents
the population of the eth exciton created after two interactions
with the radiation field. The hopping term includes the ESA
diagrams (iiia for kI and via for kII) and ESE (ia for kI and
iva for kII). The Green’s function Ge′e′,ee

(N) is the conditional
probability for the exciton to hop from e to e′ during t2

obtained by solving the Pauli equation (eq 26 with the rate
matrix in eq 362). The window function We represents the
contribution of the eth exciton to the detected signal. The
second term in eq 176 is the GSB contribution where, during
t2, the system is in the ground state (diagram ii for kI and v
for kII). Formal expressions for the doorway and the window
functions are given in Appendix J.
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The final expressions for the kI and kII response functions
are given by eqs 141-151. The relevant phase functions �(ib),
�(iiib), �(ivb), and �(vib) (coherence pathways) are given in eq
166. The remaining phase functions �(ia), �(ii), �(iiia), �(iva), �(v),
and �(via) (sequential pathways) are

�e′e
(ia)(t3, t2, t1))-gee

* (t1)- ge′e′
* (t3)+ 2iλe′e′t3,

�ee
(ii)(t3, t2, t1))-gee

* (t1)- ge′e′ (t3),

�fee
(iiia)(t3, t2, t1))-gee

* (t1)- ge′e′
* (t3)- gff(t3)+ ge′f(t3)+

2i(λff - λe′e′)t3,

�ee
(iva)(t3, t2, t1))-gee(t1)- ge′e′

* (t3)+ 2iλe′e′t3,

�e′e
(v)(t3, t2, t1))-gee(t1)- ge′e′(t3),

�fe′e
(via)(t3, t2, t1))-gee(t1)- ge′e

* (t3)- gff(t3)+ ge′f(t3)+
2i(λff - λe′e′)t3 . (177)

The lifetimes (eq 146) in this case are given by τa
-1 )

∑bKbb,aa,, and

λVV′ ) Im lim
tf∞

ġVV′ (t) (178)

is the bath reorganization energy.
The results in section 4 are based on the Markovian

approximation for the entire response function. The present
expressions treat the various time intervals and pathways
differently. For the pathways that contain coherences during
t2, we maintain the correlated bath dynamics by treating
diagonal fluctuations exactly. Second-order perturbation
theory with the Markovian approximation is used for off-
diagonal fluctuations to get lifetime broadenings. The
populations containing pathways during t2 ignore bath-
fluctuation correlations between different propagation inter-
vals t1, t2, and t3. During t1 and t3, the diagonal fluctuations
are treated exactly (by the cumulant expansion). Again,
second-order Markovian perturbation theory is made for off-
diagonal fluctuations. During t2, second-order Markovian
perturbation theory is performed for the coupling with all
bath coordinates, which results in the secular Redfield
equation.

The Redfield equations assume fast bath fluctuations
and yield Lorentzian line shapes. The present expressions
are more general since they allow for finite bath timescale
and arbitrary line shapes. However, we assumed the
complete factorization of the response function into the
doorway and window functions, i.e., memory is erased
during the t2 period; correlations between fluctuations
during intervals t1 and t3 have been neglected. In the next
subsection, we present a higher-level approximation that
does retain such correlations.

11.3. Combining Slow Diagonal Fluctuations with
Exciton Transport

We now derive approximate expressions for the kI and
kII techniques that include both slow bath fluctuations and
transport.24 kIII does not involve transport and needs not be
considered here. In subsection 11.2, we assumed fluctuation
timescale shorter than the time intervals t1, t2, and t3. Here,
the bath fluctuations are slow compared to t1, t2, and t3.

The Feynman diagrams for kI (Figure 4) represent the time
evolution of the density matrix in the coherent regime where
population relaxation is neglected. Figure 7 contains ad-
ditional terms that represent population transfer (e * e′)

during t2. The population contributions, therefore, have
two terms: a coherent, population-conserving term when
population during t2 does not change (Figure 4) and the
population-transfer term, where populations hop from state
e into e′ (Figure 7). The same partitioning also applies to
kII.

We assume a bath with both slow Q(S) and fast Q(F) modes.
The Markovian approximation is applied to the fast
modes. During t1 and t3, these cause homogeneous line
broadening (diagonal fluctuations), while during t2, they
induce population relaxation and dephasing (off-diagonal
fluctuations) described by the Pauli master equation (eq 26).
The slow bath modes are responsible for spectral diffusion
during all three intervals t1, t2, and t3, which cause correlations
of density matrix between all these intervals. The diagonal
parts, Qee

(S), shift the system energies, while the off-diagonal
parts, Qee ′

(S) , can be eliminated by diagonalizing the system
Hamiltonian with Q(S) included explicitly (the adiabatic
approximation). This is justified provided the fluctuation
amplitude is smaller than the intraband transitions within the
one-exciton band and the Q(S) timescale is longer than
dephasing times γ-1. Within this model, the Pauli master
equation (eq 26) still holds during t2, but the population rate
matrix K is modulated by the fluctuations Q(S). We assume
a smooth bath spectral density. Q(S) fluctuations then induce
weak modulations of the transport rates, which will be
neglected. The population Green’s function GN)(t) does not
depend on Q(S) and is taken out of the bath averaging in eqs
172 and 173.24 The contribution of the population-transfer
pathways to the response functions presented below is
derived in Appendix K.

The complete response functions for the kI and kII

techniques (eq 175) contain both coherent and sequential
contributions. As in section 11.2, eqs 141-151 present the
final expressions for kl and kll response functions. The phase
functions �(ib), �(iiib), �(ivb), and �(vib) (coherence pathways)
are given in eq 166, while �(ia), �(ii), �(iiia), �(iva), �(v), and
�(via) (sequential pathways) are

�e′e
(ia)(t3, t2, t1)) δe′eφegeg

* (t1, t1 + t2 + t3, t1 + t2, 0)+

�e′eφje′ge′e
* (t3, t2, t1),

�e′e
(ii)(t3, t2, t1)) φe′geg

* (t1 + t2, t1 + t2 + t3, t1, 0),

�e′e
(iiia)(t3, t2, t1)) δe′eφefeg

* (t1, t1 + t2, t1 + t2 + t3, 0)+

�e′eφj fe′e′e
* (t3, t2, t1),

�e′e
(iva)(t3, t2, t1)) δe′eφegeg(t1, t1 + t2, t1 + t2 + t3, 0)+
�e′eφjge′e′e(t3, t2, t1),

�e′e
(v)(t3, t2, t1)) φe′geg(t1 + t2 + t3, t1 + t2, t1, 0),

�fe′e
(via)(t3, t2, t1)) δe′eφefeg(t1, t1 + t2 + t3, t1 + t2, 0)+
�e′eφje′fe′e(t3, t2, t1), (179)

where we define �ab ) 1 - δab. As in eq 146, the lifetimes
are given by τa

-1 ) ∑b Kbb,aa. In contrast to eq 177, these
expressions include correlations between the time intervals
t1, t2, and t3 in both population-conserving and population-
transfer diagrams. This level of theory can reproduce some
signatures of population transport during t2 such as the time-
dependent fluorescence Stokes shift.24

This approach, therefore, extends the DW picture of the
previous subsection. The full factorization of doorway and
window functions and population propagator in the previous
section implies that the density matrix phase is completely
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lost when the population is created, even if the population
does not hop to the other exciton state. The approach
presented in this section retains these phases despite popula-
tion hopping.

12. Explicit Treatment of Bath Dynamics; The
Stochastic Liouville Equations and Beyond

In the previous sections, bath-induced fluctuations in the
exciton transport were described perturbatively. Bath vari-
ables were formally eliminated using projection operator
techniques. A higher level of description is possible by
explicitly including some collective bath coordinates in the
supermolecule approach. This makes it possible to address
a broader class of models with arbitrary bath timescales.

12.1. Stochastic Models in Liouville Space
The stochastic Liouville equations (SLE) approach pro-

vides a consistent accounting for fluctuations of arbitrary
timescale by including some collective bath modes
explicitly.109,213,214 The method extends the Redfield equa-
tions for exciton transport, which are limited to fast
fluctuations. It further extends the CGF, which only applies
to linear diagonal coupling of energies to a Gaussian bath.
At high temperatures, both the CGF and Redfield ap-
proaches are obtained as limiting cases of the SLE.
However, the SLE has several limitations: it neglects the
system-bath entanglement, assumes an infinite bath
temperature, and is computationally more expensive than
the other methods. Finite temperature corrections will be
discussed in section 12.4.

The stochastic model assumes that the exciton Hamiltonian
(eq 57) is coupled to some classical stochastic variables σ(t),
which represent the bath. The response function is calculated
by averaging 〈 〉 over the ensemble of stochastic paths

R(3)(t3, t2, t1)) ( i
p)3

θ(t1)θ(t2)θ(t3) ×

〈Tr[µ̂|exp+[- i
p
∫t1+t2

t1+t2+t3
L0;σ(t′) dt′]V ×

exp+[- i
p
∫t1

t1+t2
L0;σ(t′) dt′]Vexp+[- i

p
∫0

t1
L0;σ(t′) dt′]VF0]〉.

(180)

Here, Lσ(t) ) [Ĥσ(t), · · ·] is the Liouville superoperator and
subscript + denotes forward time ordering. It is important
to note that Ĥ0;σ now depends on time only implicitly through
the Variable σ.

Equation 180 may be recast in the form

R(3)(t3, t2, t1)) ( i
p)3

θ(t1)θ(t2)θ(t3) ×

〈Tr[µ̂ |Gσ(t)(t3 + t2 + t1, t2 + t1) ×
VGσ(t)(t2 + t1, t1)VGσ(t)(t1, 0)VF0]〉, (181)

where Gσ(t)(ta,tb) is the Green’s function solution of the
Liouville equation for free evolution (no field) between times
ta and tb:

dFσ(t)

dt
)- i

p
[Ĥ0;σ(t), Fσ(t)]. (182)

Direct implementation requires the generation of random
paths σ(t), by, e.g., molecular dynamics simulations, con-
structing the Hamiltonian at each step, and evaluating eq

180. The quantum evolution for each path σ(t) may be
described by a wave function in Hilbert space, because
relaxation and decoherence effects only appear at the final
averaging stage. Formally, this is obtained from eq 180 by
setting

exp+[- i
p
∫0

t
Lσ(t′) dt′]Fσ )

exp+[- i
p
∫0

t
Ĥσ(t′) dt′]Fσ exp-[ i

p
∫0

t
Ĥσ(t′) dt′], (183)

where the rhs has been recast in Hilbert space. A more
economical approach that avoids the generation of ensembles
of paths is possible when the stochastic bath fluctuations,
σ(t), can be described by a few collective coordinates,
satisfying simple Markovian dynamical rules: the probability
density P(σ) of the random variables σ satisfies the master
equation

dP(σ)

dt
) L(σ)P(σ), (184)

where L(σ) is a linear operator. The dynamics is then fully
described by the stochastic Liouville equations. The contri-
bution to the density matrix F may be represented at a given
time by a vector in the joint system + bath space. This
density matrix has three indices: two represent the ket and
the bra in Liouville space, while the third denotes the state
of the stochastic variable. In the joint space, the Hamiltonian
and the Liouville superoperator are time-independent (except
for the external field). The evolution of the joint density
matrix is described by the SLE:

dF
dt

)- i
p

L
(σ)F+ L(σ)F ; (185)

L(σ)F ≡ [Ĥσ,F] thus describes both the system evolution
Hamiltonian and the system-bath coupling (Ĥ0

σ ) Ĥ0 + ĤSB

in eq 94). The system density matrix (and the response
function) is finally obtained by the standard prescription of
statistical mechanics: averaging over the initial and summing
over the final states of the stochastic variables.

12.2. Stochastic Models for Nonlinear
Spectroscopy

Since the bath dynamics is Markovian, the third-order
response function may be factorized into the product of three
Green’s function matrices in the joint system + bath space,
each representing a single time interval,

R(3)(t3, t2, t1)) ( i
p)3

〈0|TrS[µ̂|G (t3)V G (t2)VG (t1)V |F(0)〉〉 ]

(186)

with

G (t) ≡ θ(t) exp(- i
p

L 0
(σ)t+ L(σ)t). (187)

Here, the initial joint density matrix |F(0)〉〉 ) |gg〉〉|0〉 is a
direct product of the equilibrium distribution of the stochastic
variables (zero right eigenvector of L(σ)) and the ground state
of the system. The final summation 〈0|TrS includes both
tracing over the system and summation over the final bath
states realized as a scalar product with the zero left
eigenvector 〈0| of L(σ).111

Equation 186 can be readily used to calculate the nonlinear
response function; all correlations are built into the bath
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variables. The frequency-domain response function is ob-
tained by a Fourier transform of the Green’s functions

R(3)(Ω3, Ω2, Ω1))

( i
p)3

〈0|TrS[µ̂|G (Ω3)VG (Ω2)VG (Ω1)V |F(0)〉], (188)

G (Ω))- [iΩ- i
p

L 0
(σ)F+ L(σ)]-1

. (189)

The Green’s function matrices of the exciton-conserving
Hamiltonian (eqs 57 and 58) are block diagonal, and each
block (such as gg, eg, ee′) can be calculated separately.
For each Liouville space pathway, eq 186 may be recast
in terms of the matrix elements of the various block
submatrices:

Ri(t3, t2, t1) ≡ ( i
p)3

×

∑
ijklmn

〈0|µgen
Geng,emg(t3)µei gGemei,ekej

(t2)µekg
Ggej,gei

(t1)µgei
|0 〉 ,

Rii(t3, t2, t1) ≡ ( i
p)3

×

∑
ijkl

〈0|µgel
Gelg,ekg

(t3)µgek
Ggg,gg(t2)µejg

Ggej,gei
(t1)µgei

|0〉,

Riii(t3, t2, t1) ≡ -( i
p)3

×

∑
ijklmnop

〈0|µ fpeo
Gfpeo,fnem

(t3)µfn,el
Gelem,ekej

(t2)µekg
Ggej,gei

(t1)µgei
|0〉,

Riv(t3, t2, t1) ≡ ( i
p)3

×

∑
ijklmn

〈0|µengGeng,eig
(t3)µemgGelem,ejek

(t2)µgek
Gejg,eig

(t1)µeig
|0〉,

Rv(t3, t2, t1) ≡ ( i
p)3

×

∑
ijkl

〈0|µeig
Geig,ekg

(t3)µekg
Ggg,gg(t2)µgej

Gejg,eig
(t1)µeig

|0〉,

Rvi(t3, t2, t1) ≡ -( i
p)3

×

∑
ijklmnop

〈0|µ fpeo
Gfpeo,fnei

(t3)µfnem
Gemei,ejek

(t2)µgek
Gejg,eig

(t1)µeig
|0〉,

Rvii(t3, t2, t1) ≡ -( i
p)3

×

∑
ijklmnop

〈0|µ fpeo
Gfpeo,fiem

(t3)µgem
Gfig,fkg

(t2)µfkej
Gejg,eig

(t1)µeig
|0〉,

Rviii(t3, t2, t1) ≡ ( i
p)3

×

∑
ijklmn

〈0|µengGeng,emg(t3)µemfi
Gfig,fkg

(t2)µfkej
Gejg,eig

(t1)µeig
|0〉. (190)

Equation 190 accounts for coherence transfer (e.g., gej f
gek) as well as exciton transport. Consequently, the Feynman
diagrams (Figures 4 and 5) can be used, but e and f now
denote the entire single-exciton and two-exciton blocks. The
SLE is not limited to any particular basis.

Two types of stochastic models are commonly used in
theories of spectral line shapes.215 The first, M state jump,
assumes that the bath hops between M discrete states. The
Hamiltonian ĤR depends on the state R. The master equation
for PR ≡ P(σ ) R) is

dPR

dt
) ∑

	)1

M

LR	
(M)P	 (191)

and the SLE reads

dFij,R

dt
) ∑

	)1

M

LR	
(M)Fij,	 -

i
p∑l

([HR]ilFlj,R- [HR]ljFil,R),

(192)

The zero left eigenvector of L(σ), which represents the final
summation over discrete bath, is given by 〈0| ) (1,
1, ..., 1).

In the second model, σ is a continuous dimensionless
stochastic variable Q undergoing an Ornstein-Uhlenbeck
process and described by a Fokker-Planck equation216

dP(Q)
dt

) L(Q)P(Q))Λ ∂

∂Q(Q+ ∂

∂Q)P(Q), (193)

where Λ is the relaxation rate (inverse autocorrelation time).
Equation 193 describes an overdamped Brownian oscillator
in the high-temperature limit.52

The Green’s function solution of eq 193 with the initial
condition G(Q,Q′;0) ) δ(Q - Q′) is

G(Q, Q′;t))� 1

2π(1- e-2Λt)
exp[-(Q- e-ΛtQ′)2

2(1- e-2Λt) ].
(194)

The bath density approaches the equilibrium distribution
Peq(Q) ) G(Q,Q′;∞) ) (2π)-1/2 e-Q2/2 at long times t . Λ-1.
Q is, thus, a Gaussian-Markovian variable. The final
summation over a continuous bath variable is represented
by ∫dQ. A Gaussian process is uniquely characterized by
its two-point correlation function.

〈Q(t)Q(0) 〉 )∫∫QQ′G(Q, Q′;t)Peq(Q) dQ dQ′) e-Λt.

(195)

All higher multipoint correlations may be calculated by using
the Gaussian factorization rule:

〈Q(t)Q(t2) · · ·Q(tn)〉 ) 〈Q(t1)Q(t2)〉〈Q(t 3) · · ·Q(tn) 〉 +
〈Q(t1)Q(t3)〉〈Q(t 2) · · ·Q(tn)〉 + · · · +

〈Q(t1)Q(tn)〉〈Q(t 2) · · ·Q(tn-1)〉. (196)

It will be instructive to show how the CGF expressions
can be recovered from the SLE. To that end, we assume
linear coupling of the system to the Q coordinate

L0
(Q) ) L0 +QL1, (197)

where L0 and L1 operate on the system Liouville space. We
further assume noninteracting chromophores with purely
diagonal bath fluctuations

Ĥ0 + ĤSB )∑
i

p(εi + diiQ)Bi
†Bi (198)

The solution of the stochastic Liouville equations without
the field

dFij

dt
)-i[(εi - εj)+ (dii - djj)Q]Fij (199)

is

〈F ij(t)〉 ) e-iωijt〈exp[- i∫0

t
(dii - djj)Q(t′) dt′]F ij(0)〉.

(200)

This integral can be recast using the Gaussian factorization
rule (eq 196). To that end, we calculate the following
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functional that holds for arbitrary Gaussian, not necessarily
Markovian, fluctuations.

S[φ] ≡ 〈exp[i∫ φ(t)Q(t) dt]〉

)∑
n

(-i)n

n! ∫ · · ·∫ φ(t1) · · · φ(tn)〈Q(t1) · · ·Q(tn)〉

)∑
n

(-i)n(n- 1) ! !
n!

×

∫∫ φ(t′)φ(t ′ ′ )〈Q(t ′)Q(t ′ ′ )〉 dt′ dt ′ ′ × · · · ×

∫∫ φ(t(n-1))φ(t(n))〈Q(t (n-1))Q(t(n))〉 dt(n-1) dt(n)

) exp[
-1
2 ∫∫ φ(t′)φ(t″)〈Q(t ′)Q(t″) 〉dt ′ dt ″ ]. (201)

Equation 199 can be solved by the second-order cumulant
expansion

Fij(t)) e-iωijt-gii(t)-gjj(t)+gij(t)+gji(t)Fij(0) (202)

with the line-shape function

gij(t))∫0

t ∫0

t′
diidjj〈Q(t ′)Q(t′′)〉 dt′′dt′

)
diidjj

Λ2
(e-Λt +Λt- 1). (203)

Equation 203 may be also obtained from eq 161 by taking
the infinite temperature limit, and the following spectral
density Cij

″ (ω) ) (	p)diidjjωΛ/(ω2 + Λ2). Comparing eqs 169
and 203, we find 2λVV′ ≡ (	p)dVVdV′V′. At infinite temperature,
the imaginary part of the line-shape function vanishes.
Qualitatively new effects of the bath timescale, described
by the SLE, will only appear when we go beyond eq 198
and include the coupling between excitons, add nonlinear
coupling between the system and Q, or assume a non-
Gaussian bath.

The third-order response functions can be obtained by
using the cumulant expansion and recast in the form of eqs
162-165 together with eq 203. To see that, we calculate,
for instance, the ESE contribution

Ri
(3)(t3, t2, t1)) ( i

p)3∑
ee′

µge′ µeg µe′g µge eiεe(t1+t2)-iεe′ (t2+t3) ×

〈exp(i∫0

t1+t2 deeQ(t′) dt′- i∫t1

t1+t2+t3 de′e′Q(t′) dt′) 〉. (204)

Making use of eqs 201 and 203, the second-order cumulant
gives

Ri
(3)(t3, t2, t1)) ( i

p)3∑
ee′

µge′ µeg µe′g µge eiεe(t1+t2)-iεe′ (t2+t3) ×

exp[-gee(t1 + t2)- ge′e′(t2 + t3)+ gee′(t1 + t2 + t3)+
gee′(t2)- gee′(t1)- gee′(t3)]. (205)

This agrees with eqs 162-165. The other contributions to
the third-order response can be recovered in the same
manner.

For interacting chromophores, the second-order cumulant
expression is an approximation. However, the exact solution
can be calculated from the SLE (eq 193) by expanding in
the eigenbasis set of L(σ) (eq 193),

|R〉Q ) exp[-(Q2 ⁄ 2)]

2R√2πR!
HR( Q

√2), (206)

where HR are Hermite polynomials and R ) 0, 1, 2, · · · .

The initial (equilibrium) bath state is represented by |0〉)
(1, 0, 0, ..., 0). The final summation assumes 〈0| ) (1, 0,
0, ..., 0).

The bath Liouvillian is thus diagonal [L(Q)]RR′ ) -RΛδRR′,
and the Q variable is given by a tridiagonal matrix.

[Q]RR′ )R′√2δR,R′+1 +
1

√2
δR,R′-1. (207)

Assuming linear system-bath coupling (eq 197), the sto-
chastic Liouville equations become

dFij,R

dt
)-RΛFij,R-

i
p∑lm [L0]ij,lmFlm,R-

i
p∑lm [L1]ij,lm ×

[R√2Flm,R-1 +
1

√2
Flm,R+1]. (208)

By switching to Hilbert space notation, we have

dFij,R

dt
)-k Λ Fij,R-

i
p∑l

([Ĥ0]ilFlj,R- [Ĥ0]ljFil,R) -

i
p∑l

[Ĥ1]il[R√2Flj,R-1 +
1

√2
Flj,R+1] -

[Ĥ1]lj[R√2Fil,R-1 +
1

√2
Fil,R+1]. (209)

Green’s function solution (eq 189) to eq 209 thus requires
inversion of block tri-diagonal matrices.216 Since the Q blocks
of the Green’s function are connected by raising SR

+ (lowering
SR
-) operators GR(1,	 ) SR

(GR,	, these can be calculated
iteratively in the form of a continued fraction

SR
+)-p-1√2(R+ 1)[iω+ p-1

L0 - (R+ 1) Λ +

1

√2
p-1

L1SR+1
- ]-1

L1 . (210)

and

SR
-)-p-1 1

√2
[iω+ p-1

L0 - (R- 1) Λ +

√2(R- 1)p-1
L1SR-1

- ]-1
L1 . (211)

The Green’s function is computed by starting with the
diagonal element

GR,R)- [iω+ p-1
L0 -RΛ + √2Rp-1

L1SR
-+

1

√2
p-1

L1SR
+]-1

. (212)

For fast fluctuations |L1| , pΛ, the continued fraction can
be truncated at the lowest level and the stochastic variables
may be eliminated; the dynamics can then be expressed in
the reduced system phase space

dF
dt

) [-ip-1
L0 -Λ-1p-2

L1L1]F . (213)

As the fluctuations slow down, the continued fraction must
be calculated to higher orders for a proper convergence.

A single Gaussian coordinate (eq 198) can describe only
a special class of bath fluctuations. Multiexponential decays
of arbitrarily correlated bath spectral functions Cij(t) can be
reproduced by including several independent Gaussian-
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Markovian coordinates Qk (each has its relaxation rate Λk

and coupling d(k)). An arbitrary C′′ ij is then decomposed into
Lorentzians

Cij
′′(ω))∑

k

	pdii
(k)djj

(k) ωΛk

ω2 +Λk
2
. (214)

The full SLE treatment (eq 208) requires no additional effort
when relaxing the model of purely diagonal fluctuations, and
a general four-index correlation matrix 〈qij(t)qkl(0)〉 can be
decomposed similarly to eq 214 by allowing finite di*j.

12.3. Application to Excitons
We now apply the SLE to the exciton model eq 57. The

Redfield equations and other quantum master equations in
the reduced system Liouville space hold in the limit of short
bath correlation time (Λ f ∞ in eq 193) where the bath
degrees of freedom may be projected out of the explicit
treatment of the SLE. To compare with the Redfield
equations, we focus on the single-exciton manifold (Gee,ee

block). Assuming fast stochastic dynamics, we can employ
eq 213. For a general coupling of the form Ĥ1 ) p∑lm

dlm|el〉〈e m|, we get for the relaxation term in the eigenbasis
of Ĥ0

p-2[L1L1]ij,kl )-2dikdlj + δjl∑
m

dimdmk + δik∑
m

dlmdmj .

(215)

By making the secular approximation (see discussion below
eq 103), we obtain the following expressions for exciton-
transfer rates (i * j) due to off-diagonal fluctuations (compare
eqs 104 and 112):

Kii,jj )-2Λ-1dijdji , (216)

Kii,ii ) 2Λ-1∑
j*i

dijdji . (217)

In addition, we have dephasing rates originating from exciton
transport (lifetime) and pure dephasing due to site diagonal
fluctuations

Kij,ij )Λ-1[(dii - djj)
2 +∑

k*i

dikdkj +∑
k*j

djkdkj]. (218)

The stochastic model thus agrees with the Redfield equations
for fast fluctuations and infinite temperature (see Appendix
G). Finite temperature corrections will be discussed below.

Note that, because the SLE is an exact representation
of a physical stochastic model, it is guaranteed to yield a
physically acceptable, positive definite density matrix for
arbitrary values of all parameters. For the Redfield
equation, in contrast, this is only guaranteed in the secular
approximation.

We next demonstrate qualitatively new features predicted
by stochastic models of exciton dynamics. We restrict the
discussion to slow fluctuations, which show the most
pronounced effects. We demonstrate how three assumptions
made in the Redfield equations and the cumulant expansion
may be relaxed by the SLE: Gaussian fluctuations,
Markovian exciton transport, and linear system-bath
coupling.

We first consider non-Gaussian fluctuations. The Kubo-
Anderson two-state-jump model217-219 (eq 192 with M ) 2)
has been applied220 to hydrogen-bonding fluctuations in the

OD stretching mode of phenol in benzene,221 for which 2D
line shapes show the timescale of creation/dissociation of
the hydrogen bond. Below, we examine slow two-state-jump
fluctuations in a dimer. We consider a model system with a
few well-resolved absorption peaks. These may arise either
from various exciton states or from different slowly inter-
converting states of the bath. The absorption and the 2D SkI

line shape of two noninteracting chromophores, undergoing
two-state-jump spectral diffusion, are shown in Figure 22.
In Figure 22 [top], the “up”, u (“down”, d) state is responsible
for the two outer (inner) peaks. The 2D line shapes at short
delay times t2 ) 0 are plotted for the i, ii, iv, and v diagrams
(Figure 22 [bottom]). In diagrams i, ii, and v, we see cross-
peaks between different excitons, because one exciton can
be annihilated and another can be created by two interactions
with the laser field, and the aggregate can thus oscillate at a
different frequency during t1 and t3 without any exciton
transport during t2. However, no cross-peaks are observed
at short delay times between various bath states before they
can change. (For fast bath, motional narrowing will collapse
the spectrum into a single peak.) In diagram iv, the exciton
state in t1 and t3 interval must be the same and no cross-
peaks are observed.

Second, the SLE can account for the finite bath fluctuation
timescale. For instance, in ref 221, fluctuations originating
from the complexation timescale and the 2D signals revealed
the kinetic rate constants. The fluctuation timescale is crucial
for some dynamical effects. For excitonic systems that
possess some symmetry, the ground state may be dipole

Figure 22. Linear (top) and 2D signal (bottom) for two-exciton
with a two-state-jump (u, d) bath model. The signals corresponding
to diagrams i, ii, iv, and v are displayed for t2 ) 0, ε1u ) 30Γ, ε1d

) 10Γ, ε2u ) -30Γ, ε2d ) -10Γ, Ju ) Jd ) 0; ku ) kd ) Γ, where
Γ is the spectral line width; Umn,kl ) ∞.
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coupled to only a few eigenstates, and many levels are dark.
Assuming fast spectral fluctuations (Redfield theory), these
levels remain dark. A slow coordinate may, however, break
these selections rules, and the dark eigenstates |ψi(Q)〉 may
temporarily acquire some oscillator strength, resulting in
additional peaks. Similar peaks can be also reproduced by
introducing static disorder on the top of the Redfield
equations. However, the SLE account for the fluctuation
timescales and can properly describe the dynamics of the
additional peaks.222 Figure 23 illustrates this for a slow
Gaussian spectral diffusion in a homodimer where the
absorptive line shape (the sum of kI and kII signals)

RA(Ω3, t2, Ω1) ≡-Im[RkI
(Ω3, t2,-Ω1)+RkII

(Ω3, t2, Ω1)]

(219)

is plotted for two t2 delay times. All oscillator strength is carried
by the symmetric state (upper diagonal peak in Figure 23), and
the only way to observe the other (lower) level is through the
coupling to slow bath coordinates (lower diagonal peak in
Figure 23), which disappears on the relaxation timescale.

Third, the SLE can describe nonlinear coupling of
system parameters to Gaussian fluctuations. This effect
is less dramatic than the other two, yet clearly observable.
For instance, the quadratic expansion of interchromophore
(J) coupling with stochastic motions of dihedral angles
in trialanine is hardly affected by the 1D infrared
absorption line shape but was necessary for the simulation
of its 2D spectra.223 Additional effects, such as relaxing the
Condon approximation and allowing for fluctuations of the
dipole amplitude, may be readily described by the explicit
representation of the bath.

The SLE show qualitative effects that are missed by the
Redfield theory and can provide a test for other approximate
methods, but at a higher computational cost. The dimen-
sionality of the joint system + bath space grows exponen-
tially with the number of collective coordinates. It is,
therefore, not practical to assign an independent bath
oscillator for each chromophore in large aggregates, as
required for the most general description of fluctuations with
an arbitrary degree of correlations. Few collective coordinates
should be identified in order to keep the problem tractable.

12.4. Microscopic Bath Dynamics beyond the
Stochastic Liouville Equations

The SLE, when introduced phenomenologically, can
readily describe non-Gaussian fluctuations such as multistate
jumps. However, they do not provide any guidance as to
how to include finite temperature effects. These may be
incorporated by adopting a more microscopic level of
modeling of the collective coordinates.

We consider a bath consisting of a single harmonic
oscillator (P̂,Q̂) coupled to many harmonic modes and
described by the Hamiltonian183,224,225

ĤB )
P̂2

2M
+ MΩ2Q̂2

2
+∑

j

p̂j
2

2mj
+

mjωj
2

2 (q̂j -
cjQ̂

mjωj
2)2

,

(220)

ĤSB )∑
mn

MΩ2d
∼

mnBm
+BnQ̂. (221)

This Hamiltonian is identical to eqs 95 and 98 but with a
different choice of bath variables. This microscopic model
for linearly coupled Gaussian fluctuations is exactly solvable
at all temperatures and, therefore, allows one to discuss finite
temperature corrections to the SLE. It can describe, e.g., the
Stokes shift, finite temperature excitonic densities, and other
temperature effects. Quartic coupling can be solved in a
closed form as well, but the expressions are much more
complex.226-229

We introduce the bath spectral density, which describes
the correlations of the force F̂ ) ∑j cjq̂j, acting on the Q̂
coordinates by the other bath modes.

J ′′ (ω)) 1
2∫ dt eiωt〈[F̂(t), F̂(0)]〉. (222)

Comparing with eq 352, we get

J′′ (ω) ≡∑
j

pπcj
2

2mjωj
[δ(ω-ωj)- δ(ω+ωj)].

(223)

The noise acting on the system is described by a different
spectral density C(Q)(ω), which represents the correlations
of Q̂ coordinate in the Hilbert picture:

C(Q)(ω)) 1
2∫ dt eiωt〈[Q̂(t), Q̂(0)]〉

) 1

M2

J ′′ (ω)

(Ω2 -ω2)2 + [M-1p-1J′′(ω)]2
.

(224)

Assuming that the microscopic bath modes q̂ are faster than
the collective coordinate Q̂, taking J′′(ω) ) pMΩ2ω/Λ, and
approximating Ω2 - ω2 ≈ Ω2, the bath spectral density
reduces to the overdamped Brownian oscillator form:

C(Q)(ω)) p

MΩ2

ωΛ
ω2 +Λ2

. (225)

At high temperatures p coth(p	ω/2) ≈ 2(	ω)-1, we recover
the Gaussian-Markovian stochastic process (eq 195) with
(1/2)〈{Q̂(t), Q̂(0)}〉 ) (	MΩ2)-1 exp(-Λ|τ|), where {A, B}
) AB + BA is the anticommutator. The Uhlenbeck-Ornstein
process is a high-temperature limiting case of the model (eq
220).224 By rescaling (	M)1/2ΩQ̂ f Q, to obtain a dimen-
sionless unit equilibrium width, and setting MΩ2d̃mnQ̂f QL1,
we recover eq 197.

Figure 23. 1D and 2D absorptive signal (eq 219) of a model dimer
with spectral diffusion described by two Gaussian-Markovian
oscillators (one coupled to one site) for short t2 ) 0 (left panel)
and long t2 . Λ-1 (right panel) times. Parameters µ1 ) µ2 ) 1,
d11 ) d22 ) 0.3 J; Λ1 ) Λ2 ) 0.1 J, ε1 ) ε2 ) 0.0; Umn, kl ) ∞.
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Finite temperature corrections to the SLE with the linear
coupling model are proportional to the anticommutator
{Ĥ1, F},109,183

T)- Λ	
2 ( ∂

∂Q){H1, ...}. (226)

This correction, which represents the back-action of the
system on the bath, is obviously missed by stochastic models.
However, its inclusion does not increase the level of
complexity of the present SLE, because it retains the simple
tridiagonal form of eq 208 in Q space

[ ∂

∂Q]R′R
) √2RδR′,R+1 . (227)

The resulting equations of motion

dF
dt

)- i
p

L
(σ)F+ L(σ)F+ TF (228)

describe a noise at finite temperature, which generalizes the
infinite temperature with finite fluctuation timescale of the
SLE, and the finite-temperature fast fluctuations of the
Redfield equations.

The finite-temperature correction (eq 226) represents bath
reorganization. Consider the spectral diffusion model of
purely diagonal fluctuations dmn ) δmndmm (no off-diagonal
coupling fluctuations). Expanding T in exciton eigenstates
|em〉, it may be added to the Smoluchowski equation,230,231

yielding

[L+ T]|emem〉〉
(Q) )Λ ∂

∂Q (Q- 	dmm + ∂

∂Q). (229)

For this model, the free-energy surfaces for the various states
are linearly displaced by 	(dmm - dnn). In both states, the
Smoluchowski equation represents diffusion of the bath in
a potential whose equilibrium is displaced by dmm. The
displacement depends on the state of the system. For the
coherence block, we have

[L+ T]|emen〉〉
(Q) )Λ ∂

∂Q (Q- 	
dmm + dnn

2
∂

∂Q) (230)

and the particle moves on a surface whose equilibrium
displacement lies midway between those of levels |em〉 and
|en〉 in eq 229.

Equation 228 holds at moderately high temperatures. At
low temperatures, 	pΩ > 1, the quantization of bath
oscillators is necessary and higher-order terms in 	 obtained
by expanding the coth(p	ω/2) term in eq 161 must be
included. This requires the introduction of additional bath
oscillators with relaxation rates 2πn/	 (Matsubara frequen-
cies) and a corresponding width.183,109 These corrections have
a similar structure as eq 228 but increase the computational
cost.

The line-shape function for noninteracting chromophores
linearly coupled to an overdamped Brownian oscillator (eqs
161 and 225) may be calculated exactly for arbitrary
temperature using the second-order cumulant expression and
is given by eq 168 with 2λνν′ ≡ (	p)dννdν′ν′ . The imaginary
part of this line-shape function represents the correction eq
228 and the Stokes shift.

For interacting chromophores, finite-temperature correc-
tions establish thermal distribution of exciton densities, which
makes this level of theory important for realistic modeling
of many experimental systems in optical domain (such as
FMO complex at 77 K).

The phenomenological viewpoint of the SLE model as a
spectral random walk suggests another class of generaliza-
tions. The theory of random walks has many techniques and
models, which go beyond ordinary Markovian diffusion.232

One possible extension is the continuous-time random walk
(CTRW) model of spectral diffusion.233 This non-Markovian
model assumes a waiting-time distribution function [Y(t)]lk

for the random walk jump of the bath from state k to l. The
model is tractable thanks to its renewal property; all memory
is erased at the time of the jump. Rather than looking at the
joint system + bath density matrix at a given time, we must
follow the contributions to the density matrix from random
walks that made a step to a given state at the specified time.
This contains the information necessary to predict the future
without reference to the past. In contrast, the full (unre-
stricted) density matrix sums over contributions where
different time had elapsed from the last step. This is not
sufficient for predicting the future jumps. The random walk
paths for the third-order response may be sorted into eight
groups, based on whether or not some step is made in any
of the intervals t1, t2, and t3, and the contribution of each
group to the response function must be calculated separately.
In each group, we first focus on subintervals between the
first and last steps in each applicable interval and calculate
the propagator Z between these two times by solving the
integral equation

Z(τ))∫0

τ
Y(τ- τ′) exp[- i

p
L (τ- τ′)]Z(τ′) dτ′+ δ(τ)

(231)

which follows from the renewal property.
It remains to account for the evolution between the

boundary steps in different intervals, during which the
random walk state is fixed. The coherence evolution between
the last jump at tm

′ in the mth interval and the first jump at
tl
′ in some subsequent (lth) interval is determined by the fixed

state of bath and contributes by factor

Y(tl
′+ tm

′ + ∑
i)m+1

l-1

ti) exp(- i
p

L tl
′)V ×

∏
i)m+1

l-1

[exp(- i
p

L ti)V] exp(- i
p

L tm
′ ). (232)

Additional factors for the first jump (that may have special
waiting time distribution functions (WTDF), depending on
sample preparation (initial conditions)) and for the final
interval between the very last jump and the final time are
constructed in the same way as in eq 232 but with special
function Y. All of these contributions must be properly
multiplied, averaged over initial and summed over final
states, and convoluted over the possible tl

′ and tm
′ .

In Figure 24, we show the 2D absorptive line shape (eq
219) of a Kubo-Anderson two-state CTRW modulation of
transition frequency of a single chromophore with long-tailed
WTDFs Y(t) ≈ 1/tR+1 (1 < R < 2) resulting in the significant
divergences δΩR-3 at fundamental frequencies of the two
bath states and algebraic cross-peak relaxation proportional
to ∼1/t2

R-1.234 The CTRW model further allows one to treat
the aging of random walks with diverging average waiting
time (0 < R < 1). Aging implies that the average mobility
vanishes with time, because more and more paths are trapped
in the long tails, resulting, e.g., in the anomalous relation
between squared displacement and time 〈x2〉 ∝ t R of the free
diffusion. In addition, the individual paths σ do not uniformly

2382 Chemical Reviews, 2009, Vol. 109, No. 6 Abramavicius et al.



track the space and the random walks are nonergodic.235 Clear
signatures of aging can be seen in the third-order response
function (with respect to the time interval from the start of
the random walk to the first pulse).129 In Figure 25, the 2D
absorptive line shape (eq 219) is shown to depend on the
initial time t0 elapsed between the start of the random walk
and the first interaction with laser pulse. The parameters
correspond to fast bath limit at t0 ) 0, with a single
motionally narrowed peak. Diagonal peaks at the fundamen-
tal frequencies that grow with t0 correspond to immobilized
particles and provide clear signatures of aging. Most notable
is the coexistence of static diagonal peaks at fundamental
bath frequencies and the central motional narrowing peak.
This reflects the strongly inhomogenous (nonergodic) form
of aging as described by the CTRW model. Measurements
of the aging response would require the preparation of fresh
samples before the application of each pulse sequence,
making sure that the system has fully relaxed so that the
age of the sample can be properly defined. 2D spectroscopy
can thus provide a probe for glassy systems characterized
by broad distributions of tunneling times.

13. Nonlocal Nonlinear Response of Chiral
Aggregates

Chiral molecules and aggregates can be probed by pulse
sequences that yield chirality-induced higher-resolution
signals. The term “chirality” has been coined more than 100
years ago by Lord Kelvin. According to his definition, “any
geometrical figure, or group of points is chiral if its image
in a plane mirror, ideally realized, cannot be brought to
coincide with itself”. Chiral systems, therefore, come in two
equally probable mirror-image configurations.236 Mirror

reflection with respect to the xy plane can be described by
two successive symmetry operations: (i) parity P (space
inversion P(x, y, z) ) (-x, -y, -z)) and (ii) coordinate
system rotation by π around the z-axis. Isotropic ensembles
of randomly oriented molecules are invariant to an overall
rotation. A racemic mixture of chiral molecules with opposite
sense of chirality is invariant to parity, whereas an unequal
mixture forms an isotropic chiral ensemble. The parity
operation thus transforms between isotropic ensembles with
an opposite sense of chirality. Aggregate chirality can arise
from both the chemical structure of individual chromophores
and from a chiral arrangement (even when the chromophores
are nonchiral).

Since the successive application of two parity operations
restores the system back into its original state, optical signals
(like all system properties and physical observables) can be
classified as either parity-odd (PFo ) -Fo) or even (PFe )
Fe).237,238 The former change sign when the chirality is reversed
and, therefore, must vanish for nonchiral systems and racemates
(equal mixtures of chiral molecules with opposite chirality).
Parity-even signals, in contrast, are not sensitive to the sense
of chirality. We shall distinguish between two types of signals:
chirality-induced (CI) and nonchiral (NC).

Circularly-polarized light is chiral since it has either left
(L) or right (R) screw symmetry with respect to the
propagation direction. The simplest chirality-induced linear
optical technique, circular dichroism (CD), measures the
difference between absorption of L and R circularly polarized
light.93,239,240 Thanks to its high structural sensitivity, the
technique has been extensively applied to structure deter-
mination using electronic transitions in the visible241,242 and
the UV243-245 or vibrational transitions in the IR.246-248

Raman optical activity (ROA) is a closely related technique
that measures the difference between resonant scattering of
L and R circularly polarized light.237,249,250

CI techniques have been extended to the nonlinear regime.
The chirality of liquid and solid interfaces where the surface
layer of molecules has some degree of order is commonly
studied using second-order techniques251 such as sum-
frequency generation (SFG) and second-harmonic generation
(SHG).252,253 CI tensor elements of the second-order suscep-
tibility have been determined for specific molecular
geometries.254-256 Second-order techniques may also be used
to study chirality in bulk samples; however, such signals are
very weak due to phase-mismatch.89,238,257,258

In the bulk, third-order signal sensitivity to system chirality
requires going beyond the dipole approximation. Chirality
induced (CI) two-dimensional pump-probe, photon-echo,
double-quatum correlation signals, have been simulated for
vibrations in chiral polypeptides and electronic spectra of
chromophore aggregates.79,81,82,90-92,94,97,156,259-263

Geometry enters optical signals through the transition
dipoles and higher multipoles. All our applications so far
were based on the dipole approximation for the coupling with
the field. The molecule was assumed to be small compared
to the wavelength of the light and can be treated as a point
particle, neglecting the variation of the phase of the field
across the molecule. This may not be generally justified for
large aggregates. To take these phase shifts into account,
we must go beyond the electric dipole approximation and
include the system’s interaction with both electric and
magnetic optical fields. This requires the introduction of a
large number of electric, magnetic, and mixed-response
functions. A more compact but equivalent description can

Figure 24. Variation of the 2D absorptive signal (eq 219) for a
single chromophore two-state-jump model with CTRW jump
dynamics Y12(t) ) Y21(t) ) (θ(t))/(2π) ∫ dω eiωt[(1)/(1 + iκ1ω/[1
+ (κRiω)R-1])]; at various time delays (left to right), t2 ) 0, 2κ1,
10κ1. κ1 is the average waiting time κ1 ) ∫ tY12(t) dt.

Figure 25. Aging effects in the 2D absorptive signal (eq 219).
The SA signal for the nonstationary random walk model Y12(t) )
Y21(t) ) (θ(t))/(2π) ∫ dω eiωt[(1)/(1 + (κiω)R)] at t2 ) 0, κ(ε1u -
ε1d

) ) 0.4, R ) 0.98 for various initial times (from left top to right
bottom) t0 ) 0κ, 10κ, 102κ, 103κ, 104κ, and 105κ.
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be developed by describing the system-field interaction
using the minimal coupling (p ·A) Hamiltonian,

ĤpA )- 1
c∫ dr[Ĵ(r) ·A(r)+ σ̂(r)A(r) ·A(r)], (233)

where A is the vector potential of the electromagnetic field.

Ĵ)∑
R

δ(r- r̂R)
qR

mR
p̂R (234)

is the electric current operator, and

σ̂(r))-∑
R

δ(r- r̂R)
qR

2

2mRc
(235)

is the charge density (rR and pR are the coordinate and
momentum operators of electron R). The p ·A Hamiltonian has
two coupling terms, which are linear and quadratic, respectively,
in the field. For a time-domain impulsive experiment where
each of the incoming laser fields interacts only once with the
system and the fields do not overlap temporally, the AA term
can be neglected. We thus adopt the simplified Hamiltonian of
eq 1 with the system-field interaction:

Ĥ′)-1
c ∫ drĴ(r)A(r, t). (236)

Similar to eq 16, we shall expand the vector potential in
modes

A(r, t))∑
j

∑
uj)(1

Aj
(uj)(t- τj) eiujkjr-iujωj(t-τj), (237)

where Aj
(uj) is the vector potential envelope corresponding to

pulse j, centered at τj, with wavevector kj and carrier
frequency ωj. Both electric and magnetic optical fields are
represented by the vector potential since B ) ∇ × A and
the Maxwell equations give E ) -Å. We then have B )
i∑j kj × Aj and E ) -i∑j ωjAj, where Aj is the vector
potential of the jth pulse.

We now generalize eq 14 by introducing the nonlocal
response function for the induced current,

J(3)(r, t))

∫∫∫ dr3 dr2 dr1∫0

∞
dt3∫0

∞
dt2∫0

∞
dt1 R

(3)(r, r3, r2, r1;t3, t2, t1) ×

A(r3, t- t3)A(r2, t- t3 - t2)A(r1, t- t3 - t2 - t1), (238)

where tj are the delays between successive interactions with
the fields and the third-order response function R(3) now
relates the current density to the vector potentials. From the
Maxwell equations and the charge continuity equation, it
follows that the current is related to the polarization P and
magnetization M vectors:

J(r)) Ṗ(r)+ ∇ r × M(r). (239)

We consider an isotropic ensemble of aggregates. We
define the center of charge of the mth molecule rm and the
displacement Gm ≡ r - rm relative to the rm. The total current
operator is given by a sum of operators localized around the
chromophore charge centers, J(r) ) ∑m δ(r - Gm -
rm)Jm(Gm). Each |Gm| < l0, where l0 is the molecular size
because Jm(Gm) ) 0 for |Gm| g l0. Performing the Fourier
transform Jm(k) ) ∫dr e-ikGJm(G), we can recast eq 238 for
current amplitudes in a form similar to eq 18:

Jks
(t))

exp[-iωs(t- τ3)- i(u2ω2 + u1ω1)(τ3 - τ2)-

iu1ω1(τ2 - τ1)] ×

∫∫∫0

∞
dt3 dt2 dt1 Rks,k3,k2,k1

(3) (t3, t2, t1) ×

exp[iωst3 + i(u2ω2 + u1ω1)t2 + iu1ω1t1] ×

A3
u3(t- t3)A2

u2(t- t3 - t2)A1
u1(t- t3 - t2 - t1). (240)

Here, ks ) u1k1 + u2k2 + u3k3 and ωs ) u1ω1 + u2ω2 +
u3ω3. We shall make the RWA for all interactions with the
k1, k2, and k3 fields. Equation 240 is the spatially nonlocal
generalization of eq 18.

The current-density operator for the m’th molecule will
be written in the form

Ĵm(r)) Jm
* (r)B̂m + Jm(r)B̂m

† . (241)

Fourier transform with respect to r, Jm(k) ) ∫ dr
exp(-ikr)Jm(r), provides a direct connection with the optical
signals. When the aggregate size is small (but not negligible)
compared to the optical wavelength, we can expand the
transition current densities to first order in the wavevectors
k, thereby connecting them to the transition dipole, µ, the
transition quadrupole q, and the magnetic transition dipole
m for chromophore m:

Jm(uk) ≈ iuω(µm + iuk · qm + iu(k ·Rm)µm - k
ω

× mm).
(242)

All molecular properties have been calculated with respect
to the origin Rm. The k ·Rm contribution is required for
molecular aggregates, where each chromophore has its own
reference point. Because of exciton delocalization, this enters
as an additional contribution of the single-exciton eigenstate
quadrupole (a collection of dipoles has higher multipoles:
quadrupole, etc.). The total quadrupole contribution can then
be represented as a sum of two terms: the transition
intramolecular quadrupole amplitude of each chromophore
∑n ψneqn

(i) and a nonlocal interchromophore contribution
originating from spatial distribution of chromophores of the
aggregate ∑n ψneRnµn, where Rn is the location (origin) of
dipole µn. Thus, the total contribution of the e exciton to
the quadrupole operator is

qe
ν2ν1 )∑

n

ψneqn
(i)ν2ν1 +∑

n

ψneRn
ν2µn

ν1. (243)

We note that, while in the local molecular basis, we have
qn

(i)ν2ν1 ) qn
(i)ν1ν2; this is no longer the case for the delocalized

excitons basis, where qe
ν2ν1 * qe

ν1ν2, due to the different origin
in the calculation of the quadrupole moment of different
molecule. A common model for molecular aggregates
assumes that each chromophore is nonchiral and is described
by its local dipole, neglecting the intramolecular quadrupole
and magnetic contributions.4,241 Only the interchromophore
quadrupole contribution is then taken into account.

The functional form of the transition current operator (eq
241) resemble our previous definition of the polarization
operator (eq 59 with µ(2) ) 0). All calculations of the
response function, therefore, proceed as before, except that
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the transition dipole expectation value must be replaced with
the induced current density. The linear response function (eq
76), for example, is now given by

R
(1)(t)) ( i

p)1∑
mn

〈Jm
ν2

*
(-k)Jn

ν1(-k)〉 Gmn(t)+ c.c.

(244)

The QP third-order response function in the coherent
regime for the kI )-k1 + k2 + k3 (eq 89) technique similarly
reads

RkI

(CED)(t3, t2, t1))

2 ( i
p)3

〈Jn4

ν4
*
(-ks)Jn3

ν3
*
(-k3)Jn2

ν2
*
(-k2)Jn1

ν1
*
(-k1)〉 ×

∫0

t3 dτ∫0

τ
dτ′ Gn4n4

′(t3 - τ)Γn4
′n1

′ ,n3
′n2

′(τ- τ′) ×

Gn3
′n3

(τ′)Gn2
′n2

(t2 + τ′)Gn1
′n1

* (t1 + t2 + τ). (245)

Here,

〈J2
ν2(k2)J1

ν1(k1) 〉 ) 〈(J2(k2) · ν2)(J1(k1) · ν1)〉
(246)

and

〈J4
ν4(k4)J3

ν3(k3)J2
ν2(k2)J1

ν1(k1) 〉 ) 〈∏
j)1

4

(Jj(kj) · νj)〉

(247)

is the orientationally averaged product: Jj(k) is the transition
current density of transition j, kj is the jth-field wavevector,
and νj is its polarization. The summation over molecules
describes an isotropic orientationally averaged ensemble.

The induced currents in isotropic ensembles (eq 247) can
be expressed in terms of orientationally averaged products
of the various multipoles:

〈J4(kS)J3(-u3k3)J2(-u2k2)J1(-u1k1) 〉 )
- u3u2u1ω4ω3ω2ω1{ 〈µ4µ3µ2µ1 〉 +

i〈(kS · q4)µ3µ2µ1 〉 - 1
ωS

〈(kS × m4)µ3µ2µ1 〉 -

iu3〈µ4(k3 · q3)µ2µ1 〉 - 1
ω3

〈µ4(k3 × m3)µ2µ1 〉 -

iu2〈µ4µ3(k2 · q2)µ1 〉 - 1
ω2

〈µ4µ3(k2 × m2)µ1 〉 -

iu1〈µ4µ3µ2(k1 · q1) 〉 - 1
ω1

〈µ4µ3µ2(k1 × m1) 〉 . (248)

13.1. The Dipole Approximation
The first term in eq 248 gives the orientationally-averaged

response functions in the dipole approximation (k ) 0)

〈J4
ν4J3

ν3J2
ν2J1

ν1 〉 )-i4(u3u2u1)(ω4ω3ω2ω1)〈µ4
ν4µ3

ν3µ2
ν2µ1

ν1 〉 .
(249)

This product of four transition dipoles is invariant to the
parity transformation and is thus independent of system
chirality. The resulting response functions and all signals
derived from them are nonchiral (NC). The following relation
holds between current-density/vector potential response func-

tion and the induced-polarization/electric field response
function: -i4ωsu3ω3u2ω2u1ω1R(3) ) R(3).

Orientational averaging of the transition dipoles performed
using eq 424 in Appendix L requires the calculation of the
vectors F{ν}

(4) in eq 429. The elements of this vector define
the three linearly independent configurations of transition
dipoles, F{ν}

(4) ) (1, 0, 0)T, or F{ν}
(4) ) (0, 1, 0)T, or F{ν}

(4) )
(0, 0, 1)T. Assuming that all laser beams propagate along z,
the independent polarization configurations, which survive
the orientational averaging, are listed in Table 1; the labels
in (ν4ν3ν2ν1) are ordered chronologically: ν1 is the polariza-
tion vector of the first pulse, ν2 is the second, etc.

We next go beyond the dipole approximation, where the
response functions become wavevector-dependent.

13.2. Beyond the Dipole Approximation; Collinear
Chiral Techniques

We assume that all laser beams propagate along z and have
the same carrier frequency. This configuration has been used
experimentally.76 The various phase-matching signals can be
separated using phase-cycling (combining various experi-
ments defined with different phases of the fields) as is
commonly done in NMR.58,264 Note that (u1, u2, u3) )
(-1, 1, 1) for kI, (1, -1, 1) for kII, and (1, 1, -1) for kIII.
From eq 248, we get

〈J4
ν4J3

ν3(u3)J2
ν2(u2)J1

ν1(u1) 〉 )-i4ωsu3ω3u2ω2u1ω1 ×

{ 〈µ4
ν4µ3

ν3µ2
ν2µ1

ν1 〉 +
ik[〈q4

z,ν4µ3
ν3µ2

ν2µ1
ν1 〉 -u3〈µ4

ν4q3
z,ν3µ2

ν2µ1
ν1 〉 -

u2〈µ4
ν4µ3

ν3q2
z,ν2µ1

ν1 〉 -u1〈µ4
ν4µ3

ν3µ2
ν2q1

z,ν1 〉 ]+
i
c∑R [εν4zR〈m4

′′Rµ3
ν3µ2

ν2µ1
ν1 〉 -u3εν3zR〈µ4

ν4m3
′′Rµ2

ν2µ1
ν1 〉 -

u2εν2zR〈µ4
ν4µ3

ν3m2
′′Rµ1

ν1 〉 -u1εν1zR〈µ4
ν4µ3

ν3µ2
ν2m1

′′R 〉 ], (250)

where k ) |k| is the wavevector amplitude and εγ	R is the
antisymmetric Levi-Civita tensor (εxyz ) εyzx ) εzxy ) 1,
any other permutation of indices changes sign, and εγ	R ) 0
when at least two indices coincide). The field polarizations
are now restricted to νj ) x, y, and we assumed m ) im′′ to
be pure imaginary, which is the case for a real basis set.

Upon examination of the vector F(5) in eq 430, as was
done for the dipole approximation, we find the three
independent techniques listed in Table 2. These involve
products of three transition dipoles and either one quadrupole
or magnetic transition dipole. Since these products change
sign upon parity transformation, the signals must be induced
by system chirality and we denote them chirality-induced
(CI).

Table 1. Linearly Independent NC Third-Order Experiments
for kI, kII, and kIII Techniques (There Is No Restriction on the
Wavevector Configuration in This Case)

NC configuration F(4)
signal label

(section 14.2)

(ν4ν3ν2ν1) ) (xxyy) (1, 0, 0)T T1
(NC)

(ν4ν3ν2ν1) ) (xyxy) (0, 1, 0)T T2
(NC)

(ν4ν3ν2ν1) ) (xyyx) (0, 0, 1)T T3
(NC)

(ν4ν3ν2ν1) ) (xxxx)
) (xxyy) + (xyyx) + (xyxy) (1, 1, 1)T
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13.3. Noncollinear Chiral Techniques

The resonant response functions in noncollinear configura-
tions depend on both pulse polarizations and wavevectors,
R(k4,k3,k2,k1; ν4,ν3,ν2,ν1). Using eq 240, we decompose all
vectors into elementary components and obtain the tensor
expression of the response function for an arbitrary wavevec-
tor configuration:

Jks

ν4 ∝ Rks,k3,k2,k1

(3) (t3, t2, t1) ×

A3
u3(t- t3)A2

u2(t- t3 - t2)A1
u1(t- t3 - t2 - t1))

∑
ν3)x,y,z

· · · ∑
ν1)x,y,z

Rks;ν4ν3ν2ν1(ksk3k2k1)
(3) (t3, t2, t1) ×

A3
u3ν3(t- t3)A2

u2ν2(t- t3 - t2)A1
u1ν1(t- t3 - t2 - t1).

(251)

Here, ν4ν3ν2ν1(k4k3k2k1) defines an elementary field polariza-
tion and wavevector configuration. Using the formalism of
ref 265, we find that only few of these configurations are
linearly independent and should be calculated. Within the
dipole approximation, we only had three linearly independent
configurations. To first order in the wavevector, the column
vector F{ν}

(5) in eq 430 defines six linearly independent
techniques. These are obtained by specifying F{ν}

(5) )
(0, 0, 0, 0, 0, 1)T, (0, 0, 0, 0, 1, 0)T, etc. The six noncollinear
wavevector and polarization configurations that lead to this
F{ν}

(5) 156 are listed in Table 3.

13.4. Chirality-Induced Signals in the FMO
Complex

The simulations presented in section 10 used the quasi-
particle expressions of the response function within the dipole
approximation. Orientational averaging was described in
section 13.1. FMO is a small complex with only 7 single-
exciton states and 21 double-exciton states; the higher-level
line-shape expressions of section 11 may be used in this case.
Orientational averaging can be performed beyond the dipole
approximation as described in sections 13.2 and 13.3.

In Figure 26, we compare NC (xxxx) and CI (xxxy) signals
calculated using the doorway-window expressions of section
11.2 for different delay times t2. The xxxx (dipole ap-
proximation) is displayed in the top row. At short time (t2

e 500 fs), it shows strong blue (negative) features along
the diagonal (GSB and ESE contributions). Positive (green)
peaks above the diagonal show ESA. Slow redistribution of
peaks observed at longer picosecond timescales reflects
population transport to lowest-energy state. The second row
depicts the corresponding xxxy collinear CI signal. At short
delay times, the fine structure of the spectrum is much more
detailed than in the NC signal. The peaks along the diagonal
now resemble the CD spectrum, while off-diagonal features
provide information about couplings. The variation with t2

can now be followed more closely since separate well-
resolved peaks appear in addition to peak shoulders seen in
(xxxx). These simulations use the realistic line width.

Signals specifically designed to probe coherent and dis-
sipative dynamics81 are shown in Figure 27. The combination
B̃1 ) Sxyzx(zxx̄z̄)

(3) - Sxyxx(zxzx)
(3) selectively probes exciton-

intraband coherences and their dynamics, since the contribu-
tions from populations exactly cancel out. On the other hand,
the signal C̃1 ) Sxxyz(zzxx)

(3) - Sxyzx(zxx̄z̄)
(3) highlights population

dynamics: since exciton-coherence contributions from the
ESE diagrams are canceled by quantum interference. Both
are CI signals that capture structural information with high
sensitivity. Since population contributions have been can-
celed, the off-diagonal peak signatures are now much better
resolved and show the coherent exciton evolution. This is
connected to coherent quantum effects in the system such
as exciton delocalization, excitonic nature, and relaxation
mechanisms.

The C̃1 signal shows a much slower dynamics. At zero
delay, the signal is simply the inverse of B̃1, but the
differences rapidly develop at longer delays. The C̃1 peak
structure is richer than B̃1, and specific peaks can be attributed
to coherences in ESE and ESA processes by comparing both
B̃1 and C̃1: the peaks that coincide in B̃1 and C̃1 are from
ESA, and the ones missing in C̃1 are from ESE. Peaks in
C̃1, which are absent in B̃1, come from populations. Note
that coherences decay within 150 fs. Thus, the longer time
dynamics is now solely due to populations. The C̃1 signal
vanishes in the absence of population transfer in the ESE
diagram. Thus, the peaks in C̃1 are particularly sensitive to
the population-transport pathways (note that ground-state
populations in GSB do not evolve in our model and only
give static contributions).

14. Manipulating 2D Signals by Coherent-Control
Pulse-Shaping Algorithms

In complex biological systems such as photosynthetic
aggregates, coherent and dissipative dynamics occur on

Table 2. Linearly Independent CI Collinear Third-Order
Experiments for kI, kII, and kIII Techniques (We Assume
Collinear Configuration Where All Wavevectors Are Along z)

CI configuration; kI, kII, kIII F(5)
signal label

(section 14.2)

(ν4ν3ν2ν1) ) (xxxy) (0, 0, 0, 0, 0, 1)T T8
(CI)

(ν4ν3ν2ν1) ) (xxyx) (0, 0, 0, 0, 1, 0)T T6
(CI)

(ν4ν3ν2ν1) ) (xyxx) (0, 0, 1, 0, 0, 0)T T3
(CI)

Table 3. Linearly Independent CI Noncollinear Third-Order
Experiments for kI, kII, and kIII Techniques with Pulse
Configurations Denoted as ν4ν3ν2ν1(k4k3k2k1) and rj ≡ -r

CI configuration; kI F(5)
signal label

(section 14.2)

xxxy (zyyjzj) (0, 0, 0, 0, 0, 1)T T9
(CI)

xxyx (zyzy) (0, 0, 0, 0, 1, 0)T T7
(CI)

xxyz (zzxx) (0, 0, 0, 1, 0, 0)T T5
(CI)

xyxx (zzyy) (0, 0, 1, 0, 0, 0)T T4
(CI)

xyxz (zxzx) (0, 1, 0, 0, 0, 0)T T2
(CI)

xyzx (zx;xjzj) (1, 0, 0, 0, 0, 0)T T1
(CI)

CI configuration; kII F(5)

xxxy (zyyz) (0, 0, 0, 0, 0, 1)T

xxyx (zyzjyj) (0, 0, 0, 0, 1, 0)T

xxyz (zzxx) (0, 0, 0, 1, 0, 0)T

xyxx (zzyy) (0, 0, 1, 0, 0, 0)T

xyxz (zxzjxj) (0, 1, 0, 0, 0, 0)T

xyzx (zxxz) (1, 0, 0, 0, 0, 0)T

CI configuration; kIII F(5)

xxxy (zyyz) (0, 0, 0, 0, 0, 1)T

xxyx (zyzy) (0, 0, 0, 0, 1, 0)T

xxyz (zzjxjx) (0, 0, 0, 1, 0, 0)T

xyxx (zzjyjy) (0, 0, 1, 0, 0, 0)T

xyxz (zxzx) (0, 1, 0, 0, 0, 0)T

xyzx (zxxz) (1, 0, 0, 0, 0, 0)T
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similar ultrafast timescales and line broadening leads to
congested, weak cross-peaks. Global data analysis may be
used to extract dynamical information out of time-resolved
signals.50 The technique allows one to unravel spectra of
excited species covered under the background of other
signals. This method has been used for data analysis of
ultrafast pump-probe (transient absorption) spectroscopy to
characterize energy-transfer dynamics in light-harvesting
antenna,47,266 to identify a photoprotective energy dissipation
mechanism in higher plants,51 and for other applications. The
interpretation is, however, model-dependent.

The active control of ultrafast processes can provide
detailed information on the underlying vibrational and
electronic dynamics.267-270 Coherent-control pulse-shaping
techniques have been used to drive quantum systems into a
desired state,271-275 to manipulate excitons in multidimen-
sional spectroscopy,96,97,262,263,276-282 and to control the func-
tion of biological systems.283-286

A number of NMR control techniques involving simul-
taneous and shaped pulses, composite pulses, refocusing
schemes, and effective Hamiltonians have been proposed.287

These developments are expected to find future applications
in quantum information and computation. The same ideas
may be used to design and simplify 2D signals of excitons.

2D spectroscopy of photosynthetic excitons provides
valuable insights into coherent and dissipative excited-state
dynamics.40,41,80,173,288,289 Specific energy-transfer pathways
may be directly observed through the temporal evolution of
cross-peaks, and their oscillations provide information about
the long-lived electronic quantum coherences. These provide
signatures of quantum effects in primary biological events.290

Analysis of these 2D spectra is complicated by spectral

overlaps and weak cross-peaks. Specific pulse polarization
sequences designed to highlight the off-diagonal spectral
features were described in section 13.81,288 In spite of this
progress, resolving weak congested cross-peaks and provid-
ing general methods for simplifying 2D optical spectra as
in 2D NMR remain an open challenge.

Below, we demonstrate how pulse-shaping and coherent-
control algorithms may be used to simplify the multidimen-
sional spectra of photosynthetic excitons, revealing infor-
mation about dynamical correlations between exciton states.
In the weak-field (third-order) regime considered in this
review, the shaped laser pulses do not modify the response
functions of the system but allow one to selectively amplify
and resolve the targeted spectral features by manipulating
the constructive and destructive interferences among Liou-
ville space pathways.

We shall represent the optical electric field in the form

E(t))∑
j)1

4

∑
uj)(1

∑
ν)x,y,z

νEjν
uj(t- τj) ×

exp[iuj(kjr-ωj(t- τj)-�jν(t- τj))]. (252)

Compared to eq 16, here we have added the temporal phase
function �jν(t - τj)68,291 and introduced the pulse polarizations
ν explicitly.

The electric field can be alternatively recast in the
frequency domain

E(ω))∑
j
∑
uj

∑
ν

νẼjν
uj(ujω-ωj) ×

exp[iujkjr+ iωτj + iuj�̃jν(ujω-ωj)], (253)

where Ẽjν
+(ω) exp(i�̃jν(ω)) is the Fourier transform of the

Figure 26. kI signal of the FMO photosynthetic complex calculated using the CGF approach of section 11.2, with population transport for
various t2 (broad band pulses with uniform E(ω) spectral shape were assumed; the signal coincides with the response function).

Figure 27. Optimized kI signals B̃1 and C̃1 (for details, see the main text) of the FMO complex calculated using the same approach as in
Figure 26. B̃1 shows only contributions from excitonic coherences, and C̃1 emphasizes population transport.
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complex envelope function Ẽjν
+(t) exp(-i�jν(t)) and Ẽ- )

[Ẽ+]*. Note that Ẽ(ω) and �̃(ω) are not the Fourier
transforms of E(t) and �(t).

The signal (eq 40) will now be recast in the form

Sks,νs
(τs, τ3, τ2, τ1))

e-iωs(τs-τ3)-i(u2ω2+u1ω1)(τ3-τ2)-iu1ω1(τ2-τ1) ×
∫-∞

+∞
dt∫∫∫0

∞
dt3 dt2 dt1 ∑

ν3ν2ν1

Rks;νsν3ν2ν1

(3) (t3, t2, t1) ×

eiωst3+i(u2ω2+u1ω1)t2+iu1ω1t1 ×
Es,νs

- (t- τs)E3,ν3

u3 (t- t3 - τ3)E2,ν2

u2 (t- t3 - t2 - τ2) ×

E1,ν1

u1 (t- t3 - t2 - t1 - τ1). (254)

The frequency-domain signals may be obtained using eq 41.
The nonlinear response contains a 4-fold summation over
molecular eigenstates. These terms interfere. Other types of
interferences arise from the multiple integrations over pulse
envelopes Eν(t) and the superposition of various tensor com-
ponents. Later in this section we demonstrate how the pulse
phases and envelopes may be manipulated in order to control
the interferences among pathways and simplify the 2D signals.

14.1. Phase, Amplitude, and Polarization Pulse
Shaping

The field of coherent control with laser pulse shaping has
grown in many directions since the original proposals in
1980s292-295 and the first experimental realizations in the early
1990s.296-299 Shaped femtosecond laser pulses provide
numerous “control knobs” for manipulating the outcome of
light-matter interactions. Experimentally this is achieved
with pulse shapers, which can independently modify the
phase, amplitude, and polarization of each frequency com-
ponent of a laser pulse. Various pulse-shaper designs have
been introduced to create arbitrary pulse profiles over broad
spectral ranges.300-304

It is possible to perform single-parameter coherent-control
protocols, where a pulse width, chirp, subpulse separation,
or other single control knobs are varied. One can also perform
free optimization control by modulating a large number of
parameters simultaneously. Pulse-shaping may be performed
in the time or frequency domain, by controlling either the
spectral (eq 253) or temporal (eqs 252) phase and amplitude
profiles. Shaping the polarization state of the electric field
(degree of ellipticity and orientation angle) provides a
different class of control parameters.275,305-308 This technique,
pioneered by Brixner, Gerber, and co-workers, opens up a
new avenue of control based on manipulating vector proper-
ties of light propagation with promising applications to time-
dependent chirality.309 In this method, the spectral phases
of two orthogonal polarization components are modulated,
and their interference leads to complex polarization-shaped
field profiles. Various pulse-shaper designs provide full
control of the polarization of ultrashort laser pulses by means
of phase and amplitude shaping.310-312

Early work had focused on the a priori design of optical pulse
shapes and was limited to simple model systems and a few
control parameters. In 1992, Judson and Rabitz proposed an
iterative-control scheme, where the optimal pulse is found in a
self-learning, adaptive loop that does not require any prior
knowledge of the system.313 This paved the way for practical
applications to complex systems with multiple control
parameters. The approach involves the following steps: (i)

generating an input trial laser pulse, (ii) applying the pulse
to the sample and observing the signal, and (iii) using a
genetic learning algorithm with a feedback loop to generate
new pulse shapes based on the outcome of the previous
trials.314 These steps are repeated iteratively until the desired
target is met. Genetic algorithms perform a parallel search
on an entire “population” of pulses, using payoff (cost
function) information, rather than derivatives or auxiliary
knowledge, and employ probabilistic, rather than determin-
istic, rules.

Adaptive control was demonstrated in 1997.315-317 Various
pulse-shaping schemes with genetic optimization were
studied by Motzkus and co-workers.318 They investigated the
stability and effectiveness of evolutionary algorithms, em-
phasizing the influence of steering parameters, number of
configurations in search space, and noise. One of the most
attractive applications of these closed-loop optimizations is
the adaptive control of chemical reactions in gas and liquid
phases, a subject that has been reviewed recently.269,319 Polariza-
tion pulse shaping has been applied to control the ionization of
iodine320 and potassium dimers321 and was found to be more
efficient than the shaping of linearly polarized pulses. Brixner
and co-workers have also used polarization pulse shaping
for the adaptive control of nano-optical fields.204 By control-
ling the interferences between near fields in nanostructures,
they achieved subwavelength localization of electromagnetic
energy, which can be used for nanoscopic ultrafast space-
time-resolved spectroscopy.322 Silberberg and co-workers had
used polarization pulse shaping to eliminate the nonresonant
background and selectively excite closely lying Raman
modes in coherent anti-Stokes Raman spectroscopy
(CARS).307 The same technique was then applied to control
angular-momentum states of atoms, demonstrating that it can
access the three-dimensional vectorial properties of the
system and excite states not accessible by linearly polarized
control.323

Polarization pulse shaping has been applied to simulate the
control of exciton localization in an ensemble of energetically
disordered and randomly oriented FMO complexes278 and to
control the exciton dynamics in FMO276 and in larger
photosynthetic complexes.277 The excitation energy was
localized on one of the chromophores by varying the spectral
and temporal profiles of linearly polarized laser pulses.
Linearly polarized pulses and simple forms of the spectral
phase function have been applied toward the control of the
energy flow in the light-harvesting complex LH2.286

Prokhorenko et al.283 varied the isomerization quantum yield
of retinal in Bacteriorhodopsin by (20% using a genetic
algorithm with a feedback loop and low-intensity shaped
laser pulses.

Femtosecond pulse shaping has been applied to perform
phase-coherent multidimensional spectroscopy.324-327 Nelson
et al. constructed a 2D femtosecond pulse-shaping
apparatus325-327 that provides control over the delay times,
phases, and temporal shapes of all four interacting pulses
and can be used for the coherent control of multidimen-
sional spectroscopy. Zanni’s group demonstrated the use
of a pulse shaper to generate a phase-stable collinear pulse
pair that can be used to obtain 2D electronic spectra in a
partially collinear configuration.324 These developments
make it possible to combine coherent control with pulse
shaping with 2D optical spectroscopy.

Here, we demonstrate how adaptive control can be used to
simplify 2D optical spectra of complex systems and enhance
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desired spectral features by shaping the spectral, temporal, and
polarization pulse profiles. Various pulse-shaping algorithms
may be applied to improve the resolution of nonlinear optical
spectra.96,97,279 Simulations demonstrate how the pump-probe
spectrum of a model helical pentamer may be better resolved
by using pure-phase polarization pulse shaping with genetic and
iterative Fourier transform algorithms.279 The state of light was
manipulated by varying the phases of two perpendicular
polarization components of the pump, holding its total
spectral and temporal intensity profiles fixed. Genetic and
iterative Fourier transform algorithms were used to search
for pulse phase profiles that optimize the ratio of the signal
at two frequencies and allow for the observation of new
features.

We adopt the description of polarization pulse shaping
developed by Brixner et al.305,328 The time-evolution of the
electric field vector within a single optical cycle around time
t is represented by an ellipse (Figure 28B). A complete
characterization of polarization-shaped laser pulses is pro-
vided by the quasi-3D representation obtained by specifying
the temporal intensity Ij(t), total phase �j(t), orientation of
the ellipse θj(t), and ellipticity εj(t).

We consider a pulse propagating along z (eq 252) with
two polarization components ν ) x and y. The field will be
described using the following variables. An auxiliary angle
� j(t) ∈ [0, π/2] represents the ratio of the amplitudes Ejν(t):

�j(t)) arctan
Ejy(t)

Ejx(t)
. (255)

A second angle δj(t) ∈ [-π, π] is given by the difference
between the temporal phase modulations:

δj(t))�jy(t)-�jx(t), (256)

θ̃j(t) ∈ [-π/4, π/4] is a third angle

θ̃j(t))
1
2

arctan [tan(2�j(t)) cos δj(t)]. (257)

The orientation angle of the ellipse θj (t) ∈ [-π/2, π/2] is
then given by

θj(t)) { θ̃j(t) if �j(t)eπ ⁄ 4,

θ̃j(t)+π ⁄ 2 if �j(t) > π ⁄ 4 ∧ θ̃j(t) < 0,

θ̃j(t)-π ⁄ 2 if �j(t) > π ⁄ 4 ∧ θ̃j(t)g 0.

The ellipticity angle εj(t) ∈ [-π/4, π/4] is

εj(t))
1
2

arcsin[sin(2�j(t)) sin δj(t)]. (258)

Finally, the total phase �j(t) of the laser-field oscillation with
respect to the perihelion of the momentary light ellipse is
defined as

�j(t))�jx(t)+ sign[θj(t)εj(t)] ×

arccos[� Ij(t)

[Ejx(t)]
2

cos θj(t) cos εj(t)]. (259)

The instantaneous pulse frequency ωj(t) is given by the time
derivative of �j(t)

ωj(t))ωj j +
d�j(t)

dt
. (260)

Various porphyrin structures, such as dimers, rings, tapes,
wheels, and boxes, have been proposed as potential artificial

light-harvesting systems.4,96,97,279,329,330 The Soret band was
described by the Frenkel-exciton model using known
parameters.263,331 Each porphyrin has two orthogonal electronic
transitions (Figure 29A). The electronic level scheme consists
of three manifolds: a ground state (g), four singly excited states
(e), and six doubly excited states (f) (Figure 29B).

We shall compare four laser pulse-shaping protocols.
The first (ST|) involves spectral and temporal shaping of
both x- and y-components, creating parallel linearly
polarized pulses. The real and imaginary components of
the electric field are independently varied. The second
form (ST⊥ ) involves spectral and temporal shaping with
perpendicular linearly polarized pulses. The third (P)
involves pure-phase polarization pulse shaping constructed
using the iterative Fourier transform (IFT) algorithm.279,332

The temporal envelopes Ejx(t) and Ejy(t) are varied holding
the total temporal intensity profile Ij(t) ) Ejx

2 (t) + Ejy
2 (t)

as well as the spectral amplitudes of both electric field
components Ẽjν(ω) and Ij(ω) ) Ẽjx

2 (ω) +
Ẽjy

2 (ω) fixed to the initial values. The temporal (�jν(t)) and
spectral (�̃jν(ω)) phases were calculated using the IFT
algorithm. To obtain Ejν(t), we varied the auxiliary angle
� j(t). The fourth (STP) is the most general and uses the
entire parameter space involving spectral, temporal, and
polarization pulse shaping.

We apply these pulse-shaping algorithms to control the
amplification of weak spectral features in heterodyne-detected
2D two-pulse photon-echo (PE) signals with a Gaussian
linearly polarized first pulse with wavevector k1, local
oscillator ks pulse, and a second pulse k2 ) k3 (Figure 28A)
tuned with adaptive pulse shaping. The signal is generated

Figure 28. Phase, amplitude, and polarization pulse shaping. (A)
Laser pulse sequence and time variables used in eqs 254 and 261
to describe a heterodyne-detected two-pulse 2D photon-echo
experiment. (B) Polarization ellipse representation of the electric
field (adapted from Brixner328). A1 and A2 are the major and minor
principle axes that define the angle of ellipticity ε. The additional
angles are the orientation angle of the ellipse θ and the auxiliary
angle �. The principal axes A1 and A2 are connected to the
laboratory-frame amplitudes E1 and E2 by a principle-axis trans-
formation. The polarization state of the laser pulses is defined by
θ and ε. The sign of ε also defines the helicity: positive (negative)
ε corresponds to the left (right) elliptically polarized light.
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in the direction ks ) -k1 + 2k2 by varying t1 and t3 and
holding t2 ) 0. The signals were calculated by performing
multiple time integrations and taking Fourier transforms with
respect to the time delays between the first and second laser
pulses, τ, and between the second and the local oscillator
pulse, t,52

SkI
(Ω1, Ω2))

∑
R,	,γ,δ

∫0

∞ ∫0

∞
dt dτ eiΩ1τ+iΩ2t ∫0

∞
dt3∫0

∞
dt2∫0

∞
dt1 ×

Rδγ	R
(3) (t3, t2, t1) ei(2ω2-ω1)t3+i(ω2-ω1)t2-iω1t1 ×

E3δ
* (t)E2γ(t- t3)E2	(t- t3 - t2)E1R

* (t+ τ- t3 - t2 - t1),
(261)

where EjV(t) are the complex laser pulse envelopes.
The simulated spectra are displayed in Figure 29E. The

reference 2D PE spectrum obtained with two linearly polarized
Gaussian pulses (top row) has two major diagonal peaks, D1
and D2, and weak off-diagonal peaks, C1 and C2. The major
contributions to D1 and D2 are the one-exciton states at ∆Ω1

′

and ∆Ω3
′ , respectively (Figure 29C). The chosen control target

was to amplify the off-diagonal (C1 and C2) relative to the
diagonal (D1 and D2) peaks. To specify the target, we define
the integrated intensity of the jth peak.

Ij ≡∫-δ

δ
dΩ1 ∫-δ

δ
dΩ2 SkI

(Ω1 +Ω1
j , Ω2 +Ω2

j ). (262)

The ratios of the integrated diagonal and cross-peaks T1 )
(ID1 + ID2)/IC1 and T2 ) (ID1 + ID2)/IC2 were used as cost
functions and minimized using a genetic algorithm (GA).
The optimal 2D PE spectra P and STP are displayed in rows
2 and 3 of Figure 29E. Peaks D1, D2, C1, and C2 are marked
by circles. Arrows mark the amplified target peaks.

Complete resolution and amplification of the target peaks
was only achieved using the STP (target T1) and STP′ (target
T2). The resulting polarization-shaped pulses are displayed
using the quasi-3D electric-field representation based on
specifying the temporal intensity Ij(t), total phase �j(t),
orientation of the ellipse θj(t), and ellipticity εj(t).305,328 In
Figure 29F, we show these parameters as a set of instanta-
neous light ellipses at different times along the electric-field
propagation axis. The ellipse sizes represent the intensity,
and their shapes provide instantaneous snapshots of the
polarization state. The projections represent the intensities
of individual electric-field components. The variation of the
total phase (chirp) is shown by color. Weak cross-peaks were
enhanced compared to the intense diagonal peaks. The
optimized electric fields with different polarizations select
different Liouville space pathways of the tensor components
of the response functions, highlighting several tensor ele-
ments with distinct features. It is clear by comparison of the
four pulse-shaping strategies that modulation of the polariza-
tion profiles was necessary in order to achieve the complete
resolution and amplification of the cross-peaks.97

14.2. Adaptive Optimization of Pulse-Polarization
Configurations

The multiparameter coherent-control schemes described
above involve elaborate pulse-shaping and characterization
techniques. We now describe a different approach for
simplifying 2D spectra by taking linear combinations of
various tensor components of the response function.

It was shown in section 13 that the third-order 2D signals
depend on various tensor components of the response
function Rks;ν4ν3ν2ν1

.79 The nonchiral (NC) tensor components
(dipole approximation) include ν4ν3ν2ν1 ≡ xxyy, xyxy, and
xyyx (note that xxxx ) xxyy + xyxy + xyyx). We label them
T1

(NC)-T3
(NC). The nine linearly independent chirality-induced

(CI) kI ) -k1 + k2 + k3 response function tensor
components are labeled T1

(CI)-T9
(CI). These were defined in

Tables 1-3 in section 13.
We have constructed the following superposition of

linearly independent response function tensor components:

S
(NC⁄CI)(ω1, ω3))∑

j)1

n

cjTj
(NC⁄CI) (263)

where n ) 3 for the NC and n ) 9 the CI techniques. The
complex coefficients ci ) ci

′ + ici″ were varied using a genetic
algorithm in order to optimize the ratios of the amplitudes
of selected peaks in the porphyrin dimer described above
(Figure 29).263 The interference of CI tensor components was
used to suppress the strong diagonal peaks and amplify weak
cross-peaks (Figure 30). The initial nonchiral signals at delay
time t2 ) 0 were simulated with a homogeneous broadening
γ ) 500 cm-1. Only two diagonal peaks, P1 and P5, and
two cross-peaks, P2 and P4, were resolved. In the chirality-
induced T1-T9 spectra, the remaining four cross-peaks P3,
P6, P7, and P8 were only partially resolved. Using a genetic

Figure 29. Pulse shaping control of excitons in the Soret band of
a chiral porphyrin dimer. (A) Structure of the complex. (B) The
exciton level scheme: the ground state, four single-exciton states,
and six two-exciton states. (C) and (D) are the linear absorption
and circular dichroism (CD) spectra, respectively, which were
obtained using the following parameters: the fluctuation magnitude
∆ ) 145 cm-1 and the relaxation rate Λ ) 160 cm-1 at room
temperature kBT ) 207 cm-1 (eq 169). (E) Absolute magnitudes
of heterodyne-detected two-pulse 2D photon-echo spectra: xxxx and
xyyx tensor components with unshaped Gaussian laser pulses; pure-
polarization pulse shaping (P); shaping of polarization, spectral and
temporal pulse profiles (STP). Arrows indicate the optimized peaks.
(F) Quasi-3D electric-field representation of the P and STP laser
pulses. The instantaneous frequencies are indicated by colors with
an arbitrary color scheme where blue marks are for the center
frequency ω0. The projections to x (bottom) and y (top) axes
represent the amplitude envelopes of the E1 and E2 components of
the electric field (see ref 279).
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algorithm, we found optimal linear combinations of CI tensor
components that amplify these peaks and reveal information
about couplings of the x- and y-polarized transitions. This
information was not available from the absorption spectra
or the initial 2D NC spectra. The Soret-band in porphyrin
aggregates is the strongest and is connected with interesting
photophysical processes such as S2-exciton emission and
dynamic intensity borrowing.333 The optimized cross-peaks
provide additional information that is not revealed by
superpositions of the nonchiral tensor components.

We next demonstrate how coherent control may be applied
to manipulate exciton-transport pathways262 in the FMO
complex as revealed by 2D experiments. The simulated xxxx
spectrum shown in Figure 31 (left column) fits the experi-
mental data.40,80 Thin lines on both axes in the 2D spectra
mark the exciton 1-7 positions in order of increasing energy.
The cross-peaks (2,4) and (2,5) corresponding to exciton
states 4 and 5 on the Ω1-axis, and state 2 on the Ω3-axis,
overlap with the diagonal peaks of the same sign, forming
an L-shape signal.

Using coherent control combined with a genetic learning
algorithm, different energy-transfer channels were separated
by optimizing a linear superposition of CI tensor components.
The control targets were aimed at manipulating various peaks
in these 2D spectra by selecting the ratios of the integrated
cross-peaks in the absolute values of the 2D signals at long
delay time t2 ) 5 ps. Two cross-peaks (1,5) and (1,7)
contributing to predicted fast and slow pathways40,80 are

marked in Figure 31 by red and green circles, respectively.
These cross-peaks represent energy transfer from higher to
lower energy states, and grow as a function of t2. The (1,7)
cross-peak was not resolved in the xxxx spectrum.

In the optimization of the fast energy-transfer pathway,
the ratio of (1,5) to (1,7) is maximized. The red circle and
arrow mark the cross-peaks (1,5) and (1,2), respectively. The
optimal coefficients obtained from the optimizations at t2 )
5 ps were then used to obtain the 2D spectra for other t2

delay times. The exciton states 1, 2, and 5 are involved in
the fast pathway, and the corresponding cross-peaks are
enhanced. For the slow pathway, the ratio of (1,7) to (1,5)
is maximized. Green circle and arrow indicate cross-peaks
(1,7) and (1,3), respectively. As a result, both pathways are
separately optimized and well-resolved. In addition, the fast
pathway shows a node (a region where the signal vanishes)
between the arrow and the red circle, corresponding to the
elimination of the (1,3) cross-peak. Similarly, in the opti-
mization of the slow pathway, we see nodes corresponding
to the elimination of the (1,2), (1,4), and (1,5) cross-peaks
of the fast pathway. Optimal laser-pulse polarization con-
figurations obtained using coherent control and genetic
algorithms enhance the chirality-induced spectral features,
revealing a specific energy-transfer pathway that was not
resolved in the xxxx spectra. These methods may be applied
to other 2D techniques. They have also been applied, for
example, in vibrational 2D spectroscopy to resolve the
structure of amyloid fibrils.334

Figure 30. Coherent control of 2D signals of a porphyrin dimer
by a linear combination of 2D CI tensor components. Shown are
absolute magnitude at delay time t2 ) 0: four nonchiral tensor
components xxxx, xxyy ) xyxy, xyyx; nine chirality-induced tensor
components T1-T9; and optimized linear combinations P3, P6, P7,
and P8, highlighting the initially poorly resolved cross-peaks with
red, green, black, and blue circles, respectively. Optimized peaks
are marked by arrows. The top left panel shows the xxxx signal
calculated with narrow line width where all peaks are resolved.

Figure 31. Coherent control of energy transfer in FMO by adaptive
optimization of a linear combination of 2D CI tensor components.
Absolute magnitude of 2D signals: nonchiral xxxx and optimal 2D
CI (fast) and (slow) linear combinations corresponding to the
optimizations of the fast and slow energy-transfer pathways. The
optimized cross-peaks (1, 5) and (1, 7) are indicated with red and
green circles, respectively.
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In conclusion, pulse shaping combined with coherent
control can increase the sensitivity of multidimensional
spectroscopy of molecular aggregates by unraveling weak
cross-peaks from otherwise congested spectra.

15. Discussion and Conclusions
Femtosecond nonlinear optical spectroscopy had gradually

evolved from simple pump-probe (transient absorption)
applications in the early 1980s to the elaborate coherent
multidimensional techniques surveyed here. The field has
been driven by both ultrafast pulse-laser source technology
(down to attoseconds)268 and progress in the theoretical
modeling of complex molecular assemblies with dissipation.

The response-function formalism provides a unified picture
of nonlinear optical techniques in systems driven by mod-
erately strong optical fields. The signals are given as
convolutions of response functions to various orders in the
incoming fields, with the field envelopes. The response
functions carry all necessary molecular information for
calculating the optical signals.

We have surveyed the key aspects of the theory, focusing
on coherent third-order heterodyne-detected signals. This
holographic phase-sensitive detection gives the signal field
itself (both amplitude and phase). Early third-order optical
measurements used homodyne detection, which only gives
the signal intensity. For completeness, we briefly describe
these signals using the response-function formalism.

The simplest third-order technique, pump-probe, is per-
formed with two optical pulses with variable delay time τ. The
first pulse, the pump, perturbs the system, and the second, the
probe, detects the time evolution of this perturbation. The
technique can be performed in various configurations: the pump
and probe can have same/different carrier frequencies, have
same/different bandwidths, and be in completely different
optical regions ranging from THz to the UV. Instead of using
the response function, this signal can be alternatively described
as an induced absorption/emission events from a nonstationary
state. Using the third-order response function when the pump
and the probe are temporally well-separated, the pump is
associated with the first two interactions, while the probe induces
the third interaction and the self-heterodyned detection. Since
the first two interactions occur within the pulse envelope and
are indistinguishable, the signal is the sum of the kI and kII

techniques, which only differ by the order of the first two
interactions (Figures 4, 5). The delay time t1 is controlled by
the pump-field, while t3 is controlled by the probe. The delay
between pump and probe pulses then coincides with the time
variable t2. The pump-probe signal is thus given by

Ipp(ωpr, τ, ωpu)) Im[SkI
(ωpr, τ,-ωpu)+ SkII

(ωpr, τ, ωpu)],

(264)

where ωpu and ωpr are the pump and probe carrier frequen-
cies. This gives the absorptive lineshape (eq 219).

Transient grating is another closely related technique. Here,
two pump-pulses with wavevectors k1 and k2 are applied
simultaneously; the probe comes after a delay τ and the
homodyne signal is measured in the k1 - k2 + kpr direction.
Usually ωpu and ωpr are tuned to the same optical transition
and the 1D time-domain signal is recorded versus τ. The
pulse bandwidth selects the relevant spectral region. This
homodyne signal is given by

ITG(τ, ωpu)) ∫0

∞
dt3|SkI

(t3, τ,-ωpu)+ SkII
(t3, τ, ωpu)|

2.

(265)

Similar to the pump-probe, this signal monitors excited-
state population and relaxation.

Finally, we note the three-pulse photon-echo peak-shifts
(3PEPS) often used to study bath fluctuations. It uses three
pulses with the same carrier frequency and a broad band-
width. 3PEPS measures the homodyne kI signal as a function
of two delay times t1 and t2.

I3PEPS(t2, t1)) ∫0

∞
dt3|SkI

(t3, t2, t1)|
2. (266)

This signal is usually displayed as a family of 1D plots vs
t1, for various values of t2. For an ensemble of two-level
systems, the signal along t1 grows for short t1, reaches a
maximum at t1 ) τM, and eventually decays. The value of
τM and its dependence on t2 reflects the bath correlation
function (eq 343). Thus, the dependence τM(t2) (the 3PEPS
signal) reveals direct information on the system-bath
couplings.42-44,48,335,336 This interpretation is limited to a
single two-level chromophore.

We have introduced two types of response functions: one
(R) connecting the induced polarization with the incoming
electric fields (eq 14), and the other (R) relates the induced
current with the vector potential of the field (eq 238). The
relation between them can be established using the
Maxwell equations. In the dipole approximation where
the signals calculated using both approaches must coin-
cide, we find that R f (ω1ω2ω3ω4)-1R, where ωj is the
carrier frequency of the jth laser field. We derived R in
the dipole approximation, ignoring the magnetic dipole
and the electric quadrupole contributions. This is adequate
for molecular complexes of nonchiral molecules. The
response function R may be extended to include the
magnetic corrections. However, it is much more conve-
nient to calculate R instead.

We have used the Frenkel-exciton model in the boson
representation. Two types of parameters are responsible for
the nonlinear optical signals. The quartic potential Umnkl

controls the exciton scattering when the field is turned off,
while µm

(2) represents anharmonic system-field interaction.
Hard-core bosons are a special case of this model, as shown
in Appendix C. They have Ummmm ) ∞. This model
developed here for electronic excitations also applies to
vibrational excitations. We then model the excitations as
intrinsically boson-like with a finite Ummmm and µm

(2) ) 0 (soft-
core bosons). This approach has been applied to coupled
vibrations in polypeptides.67,100,337

The supermolecule and quasiparticle scattering are two
conceptually different approaches for calculating the response
functions of aggregates. The sources of nonlinearities in these
descriptions look very different. In the supermolecular
representation, the double-exciton states are included ex-
plicitly, and interband transitions do not follow a harmonic
oscillator model. In the quasiparticle representation, the final
expressions involve only single-exciton states. Double-
exciton resonances are recovered from the frequency-
dependent exciton-scattering matrix. The relation and equiva-
lence of the two representations can be established when
supermolecule double-exciton states are expanded in the
single-exciton product basis for an isolated system. Differ-
ences remain since different approximations are made for
the system-bath interaction.
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In this review, the quasiparticle representation has been
used in conjunction with simple Lorentzian line shapes in
the Markovian limit. More elaborate line-shape theories could
be developed (equivalent to the CGF or SLE); however, this
is usually not necessary in large aggregates where the
lineshapes are often controlled by inhomogeneities and
spectral congestions. Each peak is then composed of many
overlapping transitions. The detailed microscopic description
of bath dynamics is crucial for small systems (∼10 or less
coupled oscillators), where the line shapes are better resolved.

The marriage of coherent-control pulse-shaping techniques
with 2D spectroscopy offers numerous future possibilities.
The rich information obtained through snapshots of electronic
dynamics can then be further refined by manipulating the
interference of various Liouville space pathways. These
techniques may also be used to shift and isolate specific
resonances, facilitating the assignment of electronic transitions.

Chirality-induced signals may lead to useful applications
of multidimensional coherent spectroscopy to structure
determination. X-ray crystallography and NMR determine
structures of molecular complexes with atomic resolution.
Optical spectroscopy can be used as a complimentary
technique for further structure refinement.

Electronic nonlinear spectroscopy is most valuable for
tracking dynamical events in molecules and their complexes.
Unlike traditional 1D transient-absorption and transient-
grating techniques, in multidimensional coherent techniques,
a large amount of information is gathered in a single shot.
Numerical data processing and analysis techniques need to
be developed to help extract system information (e.g.,
Hamiltonian, bath, structural, and relaxation parameters) from
the measured signals.

The various methods and techniques reviewed here are
based on a generic exciton and supermolecule approaches
within the RWA (sections 2, 5, 6) and may be applied
to other frequency regimes: from THz to X-ray.
2D techniques, originally developed in NMR,53 were
extended during the past decade to IR laser spectro-
scopy.60,338-343 Simulation protocols based on molecular
dynamics (MD) strategies have been reviewed recently in
ref 67. These applications use the same formalism; however,
the vibrations are bosons. Electrostatic parametrization of
vibrational Hamiltonian parameters is currently a useful
technique for including fluctuations, simulated by MD
trajectories. Developing electrostatic maps for electronic
Hamiltonians is necessary for affordable modeling of sol-
vation effects.

The theoretical apparatus presented in this review has
been implemented in the computer software package
“SPECTRON”, which has been used for simulating coherent
nonlinear optical responses in IR,79,91,92,94,95,155,344,345 vis-
ible,81,97 and UV82,156 regions. The code includes the super-
molecule and quasiparticle approaches as well as the spectral
lineshape-broadening models described in sections 2, 4, 9,
and 11.
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17. Appendix A: Survey of Linear Optical
Techniques

Linear optical signals are generated by a single interaction
with the incident optical field. Three types of linear signals
are most widely used: absorption, where the transmission
of the incident beam is measured; linear dichroism, the
difference between two polarized absorptions (longitudinal,
L, and transverse, T) in oriented samples; and circular
dichroism, the difference between the absorptions of two
circularly polarized beams (left, L, and right, R).

Using the response function formalism, the linear absorption
may be interpreted as follows. The incident beam interacts once
with the molecule and induces the linear polarization. This
polarization then creates the outgoing optical field, which
interferes with the incoming beam. This is a self-heterodyne
detection. The detector measures the net optical field, which is
attenuated by the interference. The mathematical formulation
is very nicely described in the book by Loudon.117

The absorption of the field is defined by following the
field intensity in the medium, which follows

I(z)) I0(z) exp(-κaz). (267)

The absorption coefficient κa is given by

κa(ω)) 4πω
n(ω)c

Im[R(1)(ω)]. (268)

Here, n(ω) is the refractive index of the medium, and c is
the speed of light. The macroscopic response function of an
isotropic ensemble of identical absorbers is related to the
microscopic single-molecule response function by a three-
dimensional orientational averaging. Using the response
function eq 13, we get for the absorption coefficient

κa(ω) ∝ ω∑
e

|µe|
2 γeg

(ω-ωeg)
2 + γeg

2
. (269)

Assemblies of oriented molecules are described by their
tensor properties. The response function eq 13 is a second-
rank tensor with respect to system symmetry axis. Equation
13 then involves the following orientationally averaged
product:

〈(µ2 · ν2)(µ1 · ν1)〉 ) ∑
i,j,R,	)x,y,z

〈TiRTj	〉 ν2
Rν1

	µ2
i µ1

j .

(270)

Here, we introduced the transformation tensor from the
molecular (µR) to the laboratory frame (µi), µi ) ΣRTiRµR.
We assume that the molecules are oriented along z and take
the molecular z-axis to coincide with the laboratory z-axis.
Orientational averaging in the xy plane then amounts to
rotating the molecular xy plane around the z-axis. This can
be easily calculated since, in this case, only five elements of
the transformation tensor are nonzero: Txx ) cos φ, Txy )
sin φ, Tyx ) -sin φ, Tyy ) cos φ, and Tzz ) 1, and the
orientational averaging amounts to an integration over the
rotation angle φ:
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〈TiRTj	〉 ≡ (2π)-1 ∫0

2π
dφ TiR(φ)Tj	(φ)

)2-1[2δizδRzδjzδ	z + δiR�izδj	�jz+
(δjyδ	x - δjxδ	y)(δiyδRx - δixδRy)].

(271)

Thus, when µ2 ≡ µ1 ) µ, we obtain the following possible
field configurations. For ν2 ) ν1 ) z:

〈(µ · z)(µ · z)〉 ) (µz)2 (272)

and for ν2 ) ν1 ) x (the same holds for y):

〈(µ · x)(µ · x)〉 ) 2-1[(µx)2 + (µy)2]. (273)
The linear dichroism (LD) technique measures the differ-

ence between the absorption of two perpendicularly polarized
beams in an oriented sample. The LD signal vanishes in
unoriented samples. For an oriented sample, it is given by

κLD(ω)) κL(ω)- κT(ω), (274)

where κL is the longitudinal absorption given by eq 269 with
the transition amplitude eq 272:

κL )ω∑
e

(µe
z)2γeg

(ω-ωeg)
2 + γeg

2
, (275)

whereas κT is the transverse absorption (eq 269) together
with eq 273:

κT )ω∑
e

γeg

2

(µe
x)2 + (µe

y)2

(ω-ωeg)
2 + γeg

2
. (276)

Circular dichroism (CD) is a chirality-induced linear
technique, involving two circularly polarized beams. A
circularly polarized beam propagating along z is described
by rotating unit electric vector:

E(t)) 1
2

(x- iy) exp(ikz- iωt)+ c.c., (277)

where “-(+)” sign corresponds to R(L) circular polarization.
Using the response function, we get the induced polariza-

tion generated by the R/L beam:

PR⁄L ) (x- iy)(Rxx
(1)(ω)- iRxy

(1)(ω)) exp(ikz- iωt)+ c.c.
(278)

The circular dichroism signal is commonly defined in terms
of the ellipticity angle,

tan(θ))
ER -EL

ER +EL
, (279)

where ER/L are the transmitted field amplitudes of the R and
L beams given by eq 282. For very small angles, we use
tan(θ) ≈ θ and get

θ(ω))-
ReRxy

(1)

ImRxx
(1)

. (280)

Instead of ellipticity angle, the molar ellipticity angle and
the rotational strength are often used.93

18. Appendix B: Homodyne-Detected versus
Heterodyne-Detected Coherent Signals

The induced polarization serves as a source for the signal
field, which is eventually detected. Several detection schemes

are possible. Neglecting the magnetic response, the electric
field and polarization satisfy the Maxwell equation:

∇ × ∇ × E+ 1

c2

∂
2E

∂t2
)- 4π

c2

∂
2P

∂t2
. (281)

For transverse field and for pencil-shape sample geometry,
it is possible to derive a simple relation between the emitted
field envelope and the envelope of the induced polarization:

Es(t))
2πi

n(ωs)

ωs

c
lPs(t) sinc(∆kl ⁄ 2) exp(i∆kl ⁄ 2),

(282)

where n(ωs) is the dielectric constant at frequency ωs, l is
the interaction length, and ∆k ) ks - u1k1 - u2k2 - u3k3 is
the wavevector mismatch between the polarization and the
optical field; sinc(x) ) sin(x)/x. Thus, the strongest amplitude
occurs at the phase-matching condition ∆k ) 0. The other
important conclusion is that the signal field is directly
proportional to the polarization amplitude, but is π/2 out of
phase because of the i factor.

Two detection schemes for the signal are most commonly
employed. These are known as homodyne and heterodyne
detection. In homodyne detection (HOD), the detector is placed
at the phase-matching direction and measures the integrated
intensity of the signal field, or counts photons. The field intensity
is proportional to the absolute value of the signal field. Thus,
the homodyne signal is given by

S(HOD) )∫ dt|Ps(t)|
2. (283)

An additional time-gating device can be introduced that filters
the incoming signal in a given time window before it is
detected by the homodyne technique. This time-gated ho-
modyne (TGH) detected signal is given by

S(TGH)(t)) |Ps(t)|
2. (284)

In heterodyne detection (HET), an additional laser pulse
(local oscillator, EH) is applied in the direction of the signal
field, ES. It interferes with the signal, and the resulting field
is then detected by homodyne detector. We thus get

S(HET) )∫ dt|Es(t)+EH(t)|2 ∝

2Re(EH
* (t) ·Es(t))+ |EH(t)|2 + |Es(t)|

2. (285)

The local oscillator (second term) can be readily subtracted.
The |Es(t)|2 term is typically weak since Es , EH, and thus, the
HET approach detects the signal amplitude

S(HET)(t)) 2Re(EH
* (t) ·Es(t)). (286)

This measurement can be repeated with varying phase of
EH to reveal the induced polarization Ps(t) using eq 282.

19. Appendix C: Bosonization Schemes for
Frenkel Excitons

Transformations between fermion and boson representa-
tions widely used in many-body problems may be employed
for describing excitations in semiconductors346-353 and
molecular aggregates.92,136,137,354,355

Consider molecular aggregates made of multilevel molecules.
Molecule m has a set of transitions a from its ground state.
Each transition acts as a two-level system, where the molecule
can be either in the excited state a or the ground state. The
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molecule is now viewed as a collection of two-level systems.
Within the space of a single excitation and double excitations,
an aggregate made of such molecules is described by the
Frenkel-exciton Hamiltonian

Ĥ0 ) p∑
mn

∑
ab

Vma,nbb̂ma
† b̂nb + p∑

mnkl
∑
abcd

W ma,nb
kc,ld b̂ma

† b̂kc
† b̂nbb̂ld,

(287)

where m, n label different molecules and b̂ma
† is a bosonic

([b̂ma, b̂nb
† ] ) δmnδab) exciton creation operator on molecule m

of transition a (this can be brought into the form of eq 57 by
relabeling pairs ma, nb, kc and ld as single indices). Vma,nb is
the exciton resonant coupling term, and Wma,nb

kc,ld is the two-boson
interaction potential. When W , V (weak scattering regime),
the excitations are soft-core bosons, where two particles have
a small penalty (anharmonicity), when occupying the same state
in the molecule. The requirement that two excitations cannot
reside on the same molecule is satisfied by shifting the
unphysical state energies out of the physical window of interest.
In the Hamiltonian equation (eq 287), this is done by setting
Wma,mb

mc,mdf ∞. The electronic excitations now become hard-core
bosons. Note that, by varying Wma,mb

mc,md, we can continuously turn
soft-core into hard-core bosons.

As a simple example, consider two-level molecules. The
bosons do not scatter when they are on different molecules.
To describe this model, we set Wm,m

m,m f ∞ for all m (the
indices a, b, c, and d are redundant for this model), while it
is finite for all other index combinations and describes
double-exciton binding energies. The exciton-scattering
matrix for coupled two-level systems can be calculated by
taking this limit in eq 325,

Γmm,nn(ω))- [G(0)(ω)]mm,nn
-1 , (288)

where all other elements vanish. Note that it involves the
inversion of N × N matrix Gmm,nn

(0) (all other elements are
neglected). These are given by

Gmm,nn
(0) (ω)) ∑

e2,e1

ψe1mψe2mψe1nψe2n

ω- εe2
- εe1

+ iγe2
+ iγe1

. (289)

The response is given by eqs 127-129 using the transforma-
tion to the single-exciton basis with eq 120. In some cases
(for instance, in the MFA), the response functions diverge.
The scattering matrix of Appendix H can then be used.

An alternative bosonization scheme is possible in some
cases.137 Consider a single anharmonic oscillator described
by the Hamiltonian:

Ĥ0 ) pε[B̂†B̂+ 1 ⁄ 2], (290)

where the eigenstate energy ladder consists of only d energy
levels so that 〈B̂†B̂〉 ) 0, 1, · · · , d - 1. In this case, B̂ are not
boson operators; their commutation relations are as follows:

[B̂, B̂†]) 1- d
(d- 1)!

(B̂†)d-1B̂d-1; (B̂†)d ) B̂d ) 0,

(291)

The system thus behaves as harmonic only for low excitation
levels: B̂†|j〉 ) √(j+1) |j + 1〉 when j < d; the higher-energy
states do not exist.

This system can de described in terms of boson operators
[b̂, b̂†] ) 1 using the following transformation,

B̂† ) ∑
n)0

∞

∑
k)0

d-2 √k+ 1

(dn+ k) ! √dn+ k+ 1
(b̂†)dn+k+1Ẑ(b̂)dn+k,

(292)

and

B̂) ∑
n)0

∞

∑
k)0

d-2 √k+ 1

(dn+ k) ! √dn+ k+ 1
(b̂†)dn+kẐ(b̂)dn+k+1,

(293)

where Ẑ ) exp(-b̂†b̂).
This transformation can be extended for a system of

coupled truncated oscillators described by the Hamiltonian
(the zero-point energy (1/2 in eq 290) is ignored),

Ĥ0 ) p∑
n

εnB̂n
†B̂n + p∑

mn

m*n

JmnB̂m
† B̂n +

p∑
mnkl

Umn,klB̂m
† B̂n

†B̂kB̂l + ..., (294)

where the operators B̂m refer to the mth molecule and satisfy
the commutation rules:

[B̂n, B̂m
† ]) δmn(1- d

(d- 1)!
(B̂m

† )d-1B̂m
d-1). (295)

The bosonization transformation is then similar to eqs 292
and 293, but each operator has an additional index m. The
resulting new Hamiltonian will be given in terms of various
products of b̂m

† and b̂m.
As an example, consider a molecular aggregate of two-

level molecules. The commutation relations (d ) 2 in eq
295, hard-core bosons) are136,353,354

[B̂n, B̂m
† ]) δmn(1- 2B̂m

† B̂m). (296)

In third-order spectroscopy, it is sufficient to consider up to
three-particle operators; all terms involving four or more creation
and annihilation operators contribute only to higher orders in
the field and can be neglected. It is, therefore, sufficient to
consider the Frenkel-exciton Hamiltonian of the form

Ĥ0 ) p∑
mn

hmnB̂m
† B̂n + p∑

mnkl

Umn,klB̂m
† B̂n

†B̂kB̂l. (297)

For the dipole operator, we have

µ̂)∑
m

µmB̂m + h.c. (298)

The transformation eqs 292 and 293 within the single and
double excitons reduce to

B̂m
† ≈ b̂m

† - b̂m
†2b̂m, (299)

B̂m ≈ b̂m - b̂m
† b̂m

2 . (300)

The first term in the transformation is the single-exciton term,
while the second term describes the Pauli exclusion. By
substituting eqs 299 and 300 into eq 297, we get the
transformed Hamiltonian,

Ĥ0 ) p∑
mn

hmnb̂m
† b̂n + p∑

mnkl

umn,klb̂m
† b̂n

†b̂kb̂l, (301)

where umn,kl ) - hml(δmnδnk + δnkδkl) + Umn, kl. For the dipole
operator, we similarly get
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µ)∑
m

µm(b̂m - b̂m
† b̂m

2)+ h.c. (302)

We thus find µm
(2) ) -µm in this case (see eq 59 in µm

(2)).

20. Appendix D: Contributions of Dipole-Operator
Nonlinearity to the Third-Order Response
Function

In this section, we generalize eqs 115-117 to include µ(2)

contributions to the response function. In the NEE, this
corresponds to several new sources to the third-order polariza-
tion, whose contributions are visualized in the diagrams shown
in Figures 32-34. The left-most diagram in each figure
represents the contributions coming solely from µ as given in
the main text (eqs 115-117). Various configurations of interac-
tions with µ(2) are shown in the other diagrams.

The rules for these diagrams are as follows: vertical
lines represent exciton propagators. As in the main text,
a single line represents G, a double line stands for G (both
lines pointing up) or G(N) (lines pointing up and down),
whereas a triple line represents G(Z). Solid dots represent
µ interactions with the field, while red-circled dots
represent µ(2) interactions. Since µ(2) is a local chro-
mophore property in real space, all Green’s functions must
converge into one point where the interaction takes place.

The horizontal dashed line represents V. It also introduces
an integral over the t3 interval.

Using these rules, we obtain the following additional
contributions to eq 115 for the response function for kI:

RkI

(QP2)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3

(2)µn2
µn1

* ×

∫0

t3 dt′ Gn4n4
′(t

′)Vn4
′n1

′ ,n3
′n2

′ ×

Gn1
′n3

′n2
′ ,n1

′′n3n3

(Z) (t3 - t′)Gn3n1
′′,n2n1

′′′
(N) (t2)Gn1

′′′n1

* (t1), (303)

RkI

(QP3)(t3, t2, t1)) 2i( i
p)3

µn4

(2)*µn3
µn2

µn1

* ×

Gn4n4n4,n1
′′n2

′′n3

(Z) (t3)Gn2
′′n1

′′,n2n1
′′′

(N) (t2)Gn1
′′′n1

* (t1), (304)

RkI

(QP4)(t3, t2, t1)) 2i( i
p)3

µn4

(2)*µn3

(2)µn2
µn1

* ×

Gn4n4n4,n1
′′n3n3

(Z) (t3)Gn3n1
′′,n2n1

′′′
(N) (t2)Gn1

′′′n1

* (t1), (305)

RkI

(QP5)(t3, t2, t1)) 2i( i
p)3

µn4

* µn3

(2)µn2
µn1

* ×

Gn4n3
(t3)Gn3n3,n2n1

′′′
(N) (t2)Gn1

′′′n1

* (t1). (306)

Note that, for two-level molecules when µn ) -µn
(2), eq 303

cancels some contributions from eq 115 and eq 304 cancels
eq 305.

Figure 32. Feynman diagrams for quasiparticle dynamics in the kI technique. The left-most diagram is for µ(0) ) 0 case, while others
include µ(0) * 0. Each interaction with the field is displayed by a solid dot. Time propagation is from the bottom up. The single solid line
represents G(t) propagation, the double line is either G (when both lines point to the same direction) or GN (when the lines point to opposite
directions), and the triple line represents GZ. Interaction with µ(0) * 0 is represented by a dot, where three lines meet. The response function
for each contribution can be directly written from these diagrams.

Figure 33. Feynman diagrams of the quasiparticle dynamics in kII technique. The left-most diagram is for the µ(0) ) 0 case, while others
include µ(0) * 0. The symbols are the same as in Figure 32.

Figure 34. Feynman diagrams of the quasiparticle dynamics in kIII technique. The left-most diagram is for the µ(0) ) 0 case, while others
include µ(0) * 0. The symbols are the same as in Figure 32.
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For kII additional to eq 116, we similarly have

RkII

(QP2)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3

(2)µn2

* µn1
×

∫0

t3 dt′ Gn4n4
′(t

′)Vn4
′n2

′n3
′n1

′ ×

Gn2
′n3

′n1
′ ,n2

′′n3n3

(Z) (t3 - t′)Gn3n2
′′,n1

′′n2

(N) (t2)Gn1
′′n1

(t1), (307)

RkII

(QP3)(t3, t2, t1)) 2i( i
p)3

µn4

(2)*µn3
µn2

* µn1
×

Gn4n4n4,n2
′n1

′n3

(Z) (t3)Gn1
′n2

′ ,n1
′′n2

(N) (t2)Gn1
′′n1

(t1), (308)

RkII

(QP4)(t3, t2, t1)) 2i( i
p)3

µn4

(2)*µn3

(2)µn2

* µn1
×

Gn4n4n4,n2
′n3n3

(Z) (t3)Gn3n2
′ ,n1

′′′n2

(N) (t2)Gn1
′′′n1

(t1), (309)

RkII

(QP5)(t3, t2, t1)) 2i( i
p)3

µn4

* µn3

(2)µn2

* µn1
×

Gn4n3
(t3)Gn3n3,n1

′′′n2

(N) (t2)Gn1
′′′n1

(t1). (310)

For kIII, we have the following additional contributions to
eq 117:

RkIII

(QP2)(t3, t2, t1)) 2i ( i
p)3

µn4

* µn3

* µn2

(2)µn1
×

∫0

t3 dt′ Gn4n4
′(t

′)Vn4
′n3

′n2
′n1

′ ×

Gn3
′n2

′n1
′ ,n3n2

′′n1
′′

(Z) (t3 - t′)Gn2
′′n1

′′,n2n2
(t2)Gn2n1

(t1), (311)

RkIII

(QP3)(t3, t2, t1)) 2i( i
p)3

µn4

(2)*µn3

* µn2
µn1

×

Gn4n4n4,n3n2
′n1

′
(Z) (t3)Gn2

′n1
′ ,n2n1

′′(t2)Gn1
′′n1

(t1), (312)

RkIII

(QP4)(t3, t2, t1)) 2i( i
p)3

µn4

(2)*µn3

* µn2

(2)µn1
×

Gn4n4n4,n3n2
′′n1

′′
(Z) (t3)Gn2

′′n1
′′,n2n2

(t2)Gn2n1
(t1), (313)

RkIII

(QP5)(t3, t2, t1)) 2i( i
p)3

µn4

* µn3

(2)*µn2

(2)µn1
×

Gn4n3
(t3)Gn3n3,n2n2

(t2)Gn2n1
(t1), (314)

RkIII

(QP6)(t3, t2, t1)) 2i( i
p)3

µn4

* µn3

(2)*µn2
µn1

×

Gn4n3
(t3)Gn3n3,n1

′n2
(t2)Gn1

′n1
(t1). (315)

21. Appendix E: Coherent Single- And
Two-Exciton Green’s Functions: The Bethe
Salpeter Equation

In this section, we describe the coherent exciton dynamics
in the absence of the bath and the field. The single-exciton
dynamics is described by the Green’s function G(t) by
definition B(t) ) G(t)B(0) and is a solution of eq 73. We
introduce the frequency-domain Green’s functions:

G(ω))-i∫ dt G(t) exp(iωt) (316)

with the inverse transform

G(t)) i∫ dω
2π

G(ω) exp(-iωt). (317)

This gives, for single-exciton dynamics,

G(ω)) (ω- h+ iη)-1, (318)

where η f +0 guarantees causality. The double-exciton
dynamics is described by Green’s function G given by eq
84. In the frequency domain, we then get

G(ω)) (ω- h(Y) + iη)-1. (319)
We next describe the two-exciton propagation in terms of

single-exciton scattering. For this, we use h(Y) ) h(0) + V,
which gives

hmn,m′n′
(0) ) hmm′δnn′ + hnn′δmm′ (320)

and we define a Green’s function with respect to h(0)

G
(0)(ω)) (ω- h(0) + iη)-1. (321)

The two-exciton Green’s function can be written as

G(ω)) (ω- h(0) -V+ iη)-1. (322)

Using the operator identity Â-1 ) B̂-1 + B̂-1(B̂ - Â)Â-1

and taking Â ) ω - h(Y) + iη and B̂ ) ω - h(0) + iη, we
obtain B̂- Â)Vandarriveat theDysonequation:68,79,104,108,326

G(ω))G
(0)(ω)+G

(0)(ω)VG(ω). (323)
We next define the boson-scattering matrix Γ(ω) by the

equation

VG(ω))Γ(ω)G(0)(ω). (324)
Combining eqs 323 and 324 gives

Γ(ω)) [1-VG
(0)(ω)]-1V. (325)

Γ, like V, is short-range, making it computationally tractable.
Substituting eq 324 into eq 323 and transforming back to
the time domain, we obtain the Bethe Salpeter equation

Gmn,kl(t))Gmn,kl
(0) (t)-∫0

t
dt2∫0

t2 dt1 ×

∑
m′n′k′l′

Gmn,m′n′
(0) (t- t2)Γm′n′k′l′(t2 - t1)Gk′l′,kl

(0) (t1), (326)

where the first term, G(0)(t), is the free-exciton propagator,
with matrix elements Gnm, n′m′

(0) (t) ) Gnn′(t)Gmm′(t). The second
term represents the contribution of exciton scattering. We
note that the scattering matrix has different units than the
Green’s function: in the frequency domain, G has dimensions
of time, while Γ has dimensions of angular frequency; in
the time domain, G(t) is dimensionless, while Γ(t) has units
of frequency squared.

Equation 326 recasts the two-exciton evolution in terms
of the free quasi-particle dynamics and their scattering in
real space. A doubly excited state in this representation is
described by two quasi-particles residing on the same site.
Thus, the quasiparticle picture applies even for a single
chromophore (N ) 1): two particles are then restricted to
be on the same site, and their scattering appears as the
diagonal anharmonicity, ∆m.

For two-level chromophores, two excitons cannot reside
on the same site. These are, therefore, known as hard-
core bosons. By assuming that U couplings vanish, the
hard-core boson scattering matrix is obtained from the
boson-scattering matrix in the limit Umm,mm f ∞. The
scattering matrix is then given by Γmm,nn

HC (ω) )
- [Gmm,nn

(0) (ω)]-1 with all other elements vanishing. More
complicated expression for the scattering matrix (eq 369)
can be obtained for hard-core bosons without performing
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bosonization as in Appendix H (we then also have µn
(2) )

-µn coming from Pauli blocking).
Note that, in the MFA limit for the response functions in

eqs 81-83, the response can be recast in the form of eqs
89-91 using the scattering matrix, Γn4n3,n2n1

MFA (τ) )
iδ(τ)Vn4n3,n2n1

or in the frequency domain,

ΓMFA(ω))V. (327)
Comparing this with eq 323 shows that the MFA scattering
matrix corresponds to the first-order correction of the two-
exciton Green’s function (eq 323) in the scattering potential
V. In the frequency domain, ΓMFA(ω) ) V, and we can write

G
MFA(ω))G

(0)(ω)+G
(0)(ω)VG

(0)(ω). (328)

22. Appendix F: Real Space Description of
Exciton Dephasing and Transport

In this section, we derive the dephasing matrices of the
NEE given by eqs 99-102. For this purpose, we consider
the case where the optical field is switched off.

The system and the bath are described by eqs 99-102.
The exciton dynamics is described by the Heisenberg
equation of motion as in section 6. However, because of
the bath, the equations for the exciton variables will be
coupled with the bath variables. The bath contributions
are calculated perturbatively to second order in the
system-bath coupling, where averages of bath and exciton
variables can be factorized as 〈 B̂n

†...B̂1
† B̂m...B̂1 â†â〉 )

〈 B̂n
†...B̂1

† B̂m...B̂1〉 〈 â†â〉 .107 For a harmonic bath at thermal
equilibrium, we have

〈âR
† â	 〉 ) δR	nj(wR), (329)

where

nj(ω)) 1
2

[coth(	pω ⁄ 2)- 1], (330)

is the mean boson occupation number at temperature T and
	 ) (kBT)-1. Using this factorization, we arrive at the
following NEE:

i
d
dt

Bm )∑
m′

hmm′Bm′ +∑
m′kl

Vmm′,klZm′kl + Ḃ̄m, (331)

i
d
dt

Ymn ) ∑
m′n′

hmn,m′n′
(Y) Ym′n′ + Ẏ̄mn, (332)

i
d
dt

Nmn )∑
k

[hnkNmk - hmkNkn]+ Ṅ̄mn, (333)

i
d
dt

Zkmn ) ∑
m′n′

hmn,m′n′
(Y) Zkm′n′ -∑

k′
hk′kZk′mn + Ż̄kmn. (334)

We start with the single-exciton dynamics B(1) described
by eq 331 and neglecting the Z variable. The bath-related
term in the equation of single-exciton variables is as follows:

Ḃ̄m
(1) )∑

n
∑
R

dmn,R(〈B̂n
(1)âR

† 〉 + 〈B̂n
(1)âR〉 ). (335)

The Heisenberg equation of motion for bath-assisted vari-
ables 〈B̂ (1)âR

† 〉 and 〈B̂ (1)âR〉 reads

i
d
dt

〈B̂m
(1)âR 〉 )∑

n

hmn〈B̂n
(1)âR 〉 +wR〈B̂m

(1)âR 〉 +

∑
n

dmn,RBn
(1)(1+ 〈âR

† âR 〉 ), (336)

i
d
dt

〈B̂m
(1)âR

† 〉 )∑
n

hmn〈B̂n
(1)âR

† 〉 -wR〈B̂m
(1)âR

† 〉 +

∑
n

dmn,RBm
(1)〈âR

† âR 〉 . (337)

A formal solution of these equations gives the following:

〈B̂m
(1)âR〉(t) )-i∫-∞

t
dτ ∑

nn′
Gmn

(c)(t- τ) e-iwR(t-τ) ×

dnn′,R(1+ 〈âR
† âR〉)Bn′

(1)(τ) (338)

and

〈B̂m
(1)âR

† 〉(t) )-i∫-∞
t

dτ ∑
nn′

Gmn
(c)(t- τ) eiwR(t-τ) ×

dnn′,R〈âR
† âR〉)Bn′

(1)(τ), (339)

where G(c)(t) ) θ(t) exp(-iht), where h is the matrix and
hmn is the zero-order Green’s function corresponding to eq
331 in the absence of the bath. Substituting these expressions
into eq 335, we get

Ḃ̄m
(1)(t))-i∫0

∞
dt′ kmn

(B)(t′)Bn
(1)(t- t′), (340)

k(B) is the relaxation memory kernel of the B variable:

kmn
(B)(t)) ∑

m′n′
Gm′n′

(c) (t) ×

i∫-∞
+∞ dω

2π
C′′

mm′,n′n(ω)(cos ωt coth
	pω

2
- i sin ωt).

(341)

and

C′′
mn,kl(ω))π∑

R
dmn,Rdkl,R[δ(ω-wR)- δ(ω+wR)].

(342)

is the spectral density of the coupling with the bath.
This definition is intimately related to the correlation

function of bath coordinates Q̂ defined by

CR(τ2 - τ1)) 〈Q̂R(τ2)Q̂R(τ1) 〉 . (343)

Using the symmetry

CR(-t))C R
*(t) (344)

we split it into real (which is even) and imaginary (odd) parts

CR(t))CR
′ (t)+ iCR

′ (t) (345)

and get

CR
′ (τ2 - τ1))

1
2

〈{Q̂R(τ2), Q̂R(τ1)}〉 (346)

and

C′′
R(τ2 - τ1))

1
2i

〈[Q̂R(τ2), Q̂R(τ1)] 〉 . (347)

Here, {A, B} ) AB + BA and [A, B] ) AB - BA.
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The Fourier transform of the correlation function

CR(ω))∫ dt eiωtCR(t) (348)

is real due to eq 344. We further split CR(ω) ) CR
′ (ω) +

CR
′′(ω) along the lines of eq 345:

CR
′ (ω)) 1

2 ∫ dt eiωt〈{Q̂R(t), Q̂R(0)}〉 , (349)

CR
′′(ω)) 1

2 ∫ dt eiωt〈[Q̂R(t), Q̂R(0)]〉. (350)

CR
′ (ω) is even, and CR

′′(ω) is odd. These two quantities are
related by the fluctuation-dissipation theorem

CR
′ (ω)) coth(	pω ⁄ 2)CR

′′(ω). (351)

For the harmonic bath model (eq 95), these correlation
functions can be calculated analytically and we get the
following:

CR
′′(ω)) πp

2mRwR
[δ(ω-wR)- δ(ω+wR)].

(352)

This function is independent of temperature. We refer to it
as the spectral density of bath coordinates and denote it
CR

′′ (ω) ≡ CR
(Q)(ω) to distinguish from spectral densities of

the Hamiltonian parameters used in eq 342.
Comparing eqs 342 and 352, we get

Cmn,kl
′′ (ω))∑

R

2mRwR

p
dmn,Rdkl,RCR

(Q)(ω). (353)

Equation 340 may be simplified further by assuming a short-
time memory kernel (the Markovian approximation) and
replacing B(1)(t - t′) in eq 340 by G(0)†(t′)B(1)(t). Note that
even though the exact time propagation of B(1)(t) is described
by the full Green’s function, G(t′), we can still use G(0)(t′)
since we have already neglected higher than second order
corrections in the system-bath coupling. This gives the
following:

Ḃ̄m
(1)(t))-i∑

n

γmnBn
(1)(t), (354)

where the one-exciton relaxation rate matrix is given by

γmn ) ∑
m′n′n′′

∫0

∞
dτ Gm′n′

(c) (τ)Gn′′n
(c)*(τ) ×

∫-∞
+∞ dω

2π
Cmm′,n′n′′

′′ (ω)(cos ωτ coth
	pω

2
- i sin ωτ).

(355)

Dephasing of the second-order Y(2) variables can be
calculated similarly from eq 332, since eq 332 is analogous
to eq 331 for B. Following the procedure described above,
we obtain the following:

Ẏ̄mn
(2)(t))-i∫0

∞
dt′ kmn,kl

(Y) (t′)Ykl
(2)(t- t′), (356)

where k(Y) is the tetradic relaxation memory kernel of the Y
variables:

kmn,kl
(Y) (τ))∫-∞

+∞ dω
2π

(cos ωτ coth
	pω

2
- i sin ωτ) ×

∑
m′m′′

[Cmm′,m′′k
′′ (ω)Gm′n,m′′l

(c) (τ)+Cmm′,m′′l
′′ (ω)Gm′n,km′′

(c) (τ)+

Cnm′,m′′k
′′ (ω)Gmm′,m′′l

(c) (τ)+Cnm′,m′′l
′′ (ω)Gmm′,km′′

(c) (τ)] (357)

and G(c)(t) describes the free time evolution of Y in the
absence of the bath.

In the Markovian approximation, we obtain

Ẏ̄mn
(2)(t))-i∑

kl

γmn,kl
(Y) Ykl

(2)(t), (358)

where the two-exciton relaxation matrix is as follows:

γmn,kl
(Y) )∫0

∞
dτ ∫-∞

+∞ dω
2π

(cos ωτ coth
	pω

2
- i sin ωτ)×

∑
m′m′′n′n′′

Gn′n′′,kl
(c)* (τ) ×

[Cmm′,m′′n′
′′ (ω)Gm′n,m′′n′′

(c) (τ)+

Cmm′,m′′n′′
′′ (ω)Gm′n,n′m′′

(c) (τ)+

Cnm′,m′′n′
′′ (ω)Gmm′,m′′n′′

(c) (τ)+

Cnm′,m′′n′′
′′ (ω)Gmm′,n′m′′

(c) (τ)]. (359)

Exciton dephasing affects the B and Y variables whose
Green’s functions involve coherences and oscillate at high,
optical, frequencies. The Green’s function of the N variables
is different: it describes the correlated dynamics of the
conjugate variables B̂† and B̂ and contains low-frequency
intraband oscillations related to intermolecular couplings.

Following the same procedure used in the derivation of
eqs 340 and 356, we obtain

Ṅ̄mn(t))-i∫0

∞
dt′ kmn,kl

(N) (t′)Nkl(t- t′). (360)

The relaxation kernel, k(N), calculated to second order in the
coupling with the bath is given by

kmn,m′n′
(N) (τ))∑

kl
∫-∞

+∞ dω
2π

×

[Cnkln′
′′ (ω)(cos ωτ coth

	pω
2

- i sin ωτ)G̃mk,m′l
(c,N) (τ)-

Ckmln′
′′ (ω)(cos ωτ coth

	pω
2

- i sin ωτ)G̃kn,m′l
(c,N) (τ)-

Cnkm′l
′′ (ω)(cos ωτ coth

	pω
2

+ i sin ωτ)G̃mk,ln′
(c,N) (τ)+

Ckmm′l
′′ (ω)(cos ωτ coth

	pω
2

+ i sin ωτ)G̃kn,ln′
(c,N) (τ)],

(361)

where G̃mn, kl
(c, N) (τ) ) Gmk

(c)*(τ)Gnl
(c)(τ) is the coherent N-variable

Green’s function calculated in the absence of the bath.
Invoking the Markovian approximation, we define the
N-variable relaxation rates Ṅ̄(t) ) -iK̃N(t) where

K̃mn,m′n′ )∫0

∞
dτ kmnm1n1

(N) (τ)G̃m1n1,m′n′
(c,N)* (τ), (362)

Kmn,kl ≡ K̃nm,lk is the Redfield relaxation superoperator.
The relaxation operator for Z variable is approximately

constructed from γ and γ(Y) matrices by assuming that Z
dephasing is equivalent to that of the product B*Y. The
resulting NEE eqs 99-102 contain no bath variables and
include only the dephasing and relaxation matrices. The
continuous spectral density bath models are widely used as
described in Appendix G.

23. Appendix G: Exciton Dephasing and the
Redfield Relaxation Kernel

In this section, we derive expressions for dephasing and
relaxation rates of single-exciton eigenstates using the
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results of Appendix F when each chromophore is coupled
to its own statistically independent bath with a continuous
spectral density. Fluctuations of different chromophores
are uncorrelated, and they all have the same spectral
density so that

Cmnkl
′′ (ω)) δmnδnkδklCj

′′(ω), (363)

where Cj ′′(ω) ) π∑R djmm, R
2 [δ(ω - ωR) - δ(ω + ωR)] is

now independent of the system indices. The spectral density
has the symmetry Cj ′′(ω) ) -Cj ′′(-ω). Specific models for
the spectral density, e.g., Ohmic, white noise, Lorentzian,
etc., are often used for calculating the nonlinear responses
of molecular systems.40,97,224 We assume that the bath has
several collective modes R and recast the spectral density in
the following form:

Cj ′′(ω))∑
R

λRCR(ω), (364)

where CR(ω) is a dimensionless spectral density of mode R
and λR is the coupling strength between. We define the
auxiliary functions as follows:

Mj R
(()(t))

∫-∞
∞ dω

2π
CR(ω)[coth(	pω ⁄ 2) cos(ωt)- i sin(ωt)].

(365)

By performing a one-sided Fourier transform,

Mj R
(()(ω))∫0

∞
dt exp(iωt)Mj R

(()(t) (366)

we get

Re Mj R
(()(ω)) 1

2
CR(ω)[coth(	pω ⁄ 2)( 1], (367)

Im Mj R
(()(ω))PP∫0

∞ dω′

2π
CR(ω′)

sinh(	pω′ ⁄ 2)
×

(e(	pω′⁄2

ω-ω′ +
e-	pω′⁄2

ω+ω′), (368)

where PP stands for the principal part, i.e., integration where
the singular point is removed (we have assumed that
(1/ω)CR(ω) is not singular at ω f 0); and we used πδ(x)
) limηf0 η(x2 + η2)-1. We note the symmetry Mj R

(+)*(ω) )
Mj R

(-)(-ω). The real part of Mj is responsible for dephasing
and transport rates, and the imaginary part represents spectral
shifts.

Using this function, we can calculate the dephasing rate
given by eq 355. We first transform this expression into the
single-exciton basis, and then we neglect off-diagonal
dephasing matrix elements (exciton coherence transfer). We
get the dephasing rate for exciton e in terms of the Mj
function:

γe ≡∑
R

λR∑
e′

Mj R
(+)(ωee′)Φeee′e′, (369)

where ωe′e ) (εe′ - εe) and Φe4e3e2e1
) ∑n ψne4

ψne3
ψne2

ψne1

(we assume that the exciton wave functions ψ are real). For
the Y variables, we do not use their Green’s function
explicitly. Instead, we use the exciton-scattering matrix,
which depends only on single-exciton dephasings.

The Redfield relaxation rate, K (eq 362), for the single-
exciton eigenstates is

Ke4e3e2e1
)∑

R
λR{ δe1e3

∑
e′

Mj R
(+)(ωe2e′)Φe4e′e2e′ +

δe4e2
∑
e′

Mj R
(-)(ωe′e1

)Φe′e3e′e1
-

Mj R
(+)(ωe2e4

)Φe4e3e2e1
-Mj R

(-)(ωe3e1
)Φe4e3e2e1} . (370)

The expression for the population-transport rates is a special
case (Ke′e′,ee elements)

Ke′e′,ee ) - 2Re∑
R

λRMj R
(+)(ωee′)Φe′e′ee, (371)

while the dephasing of single-exciton coherences
γee′

(N) )-Kee′ee′. The pure dephasing (used in SOS expressions)
can be simply obtained by γ̂ee′ ) γee′

(N) - 2-1(Kee,ee + Ke′e′,e′e′).
These compact expressions can be easily computed for an
arbitrary spectral density.

We next adopt the overdamped Brownian oscillator
spectral density,

C′′(ω)) 2λ ωΛ
ω2 +Λ2

, (372)

where λ corresponds to the system coupling strength with
the collective bath mode and Λ is its timescale. Using eqs
364, 367, and 368, we get144

Mj (+)(ω)) uj(ω)+Vj(ω) (373)
with the auxiliary functions

uj(ω))Λ(Λ- iω)-1[cot(	Λ ⁄ 2)- i], (374)

Vj(ω)) 4Λ(kBT ⁄ p)∑
n)1

∞ νn

νn
2 -Λ2

1
νn - iω

. (375)

νn ) 2πnkBT/p are the Matsubara frequencies. The relaxation
rates now are given in units of λ. This completes our
description of the standard Redfield equations using second-
order perturbation theory.

Assuming Gaussian statistics, an exact expression for
diagonal bath fluctuations can be obtained for calculating
the population (Pauli) relaxation block of the Redfield
equations using the second order cumulant expansion. This
expansion is correct to infinite order in the fluctuations.
System-bath coupling of off-diagonal Hamiltonian elements
is included perturbatively to second order. Exponentiation
of the second-order correlation functions of diagonal bath
fluctuations, which is exact for the harmonic bath, is then
performed. Diagonal bath fluctuations, which only modulate
the transport rate through the energy gap, can thus be
included exactly, while off-diagonal fluctuations are treated
by second-order perturbation theory. This gives for the
population relaxation rate185

Kee,ss )∫0

∞
dτ[kjes(τ)+ kjes(-τ)], (376)

kjes(τ)) kes
(F)(τ)(g̈esse(τ)- [ġsess(τ)- ġseee(τ)+ 2iλsess]

× [ġsses(τ)- ġeees(τ)+ 2iλesss]), (378)

where gabcd(t) ) ∫0
t dτ ∫0

τ dτ′ 〈 hab(τ)hcd(τ′)〉 is the line-shape
function. Here, a dot denotes the time derivative and

kes
(F)(τ)) exp(-iωesτ- geeee(τ)- gssss(τ) (379)

+gssee(τ)+ geess(τ)- 2i(λssss - λeess)τ). (380)

where λe4e3e2e1
) -limτf∞[Im ġe4e3e2e1

(τ)]. The modified Red-
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field theory eq 376 generalizes the population relaxation rate
eq 371 to include an arbitrary fluctuation time scale.
However, when the fluctuations are too slow, the transport
can no longer be defined by simple Markovian rate equations.
The calculated dephasing and relaxation rates can be used
in calculations of Green’s functions in the signal expressions
eqs 127-129.

24. Appendix H: Exciton Scattering in
Nonbosonic Systems

In section 6, we derived equations of motion for exciton
variables using boson commutation relations. The bosoniza-
tion procedure is described in Appendix C. In some applica-
tions, it may be preferable to use variables with the nonboson
commutation relations. These should be incorporated in the
equations of motion.

A generic nonbosonic system in the space of single and
double excitons is defined by the commutation relation:

[B̂m, B̂n
†]) δmn - 2∑

kl

Pmn,klB̂k
†B̂l . (381)

We assume a linear transition dipole so that µ(2) ) 0. The
Heisenberg equation of motion (eq 63) truncated at the third
order gives the following NEE:

i
d
dt

Bm )∑
m′

hmm′Bm′ +∑
m′kl

Vmm′,klZm′kl +

∑
j (µm,j

- - 2∑
npq

Pmn,pq µp,j
- Nnq), (382)

i
d
dt

Ymn ) ∑
m′n′

hmn,m′n′
(Y) Ym′n +

∑
j (µm,j

- Bn + µn,j
- Bm - 2∑

kl

Pmn,kl µl,j
-Bk), (383)

ip
d
dt

Nmn ) ∑
m′n′

L̃mn,m′n′Nm′n′ -∑
j

(µm,j
+ Bn + µn,j

- Bm
* ),

(384)

ip
d
dt

Zkmn ) ∑
m′n′

hmn,m′n′
(Y) Zkm′n′ -∑

k′
hk′kZk′mn +

∑
j (µm,j

- Nkn + µn,j
- Nkm - µk,j

+Ymn - 2∑
pq

Pmn,pq µp,j
- Npk),
(385)

where now Vmn,kl ) 2Umn,kl - 2∑q Pmn,qkhql - 2∑qp Pmn, pqUpqkl.
The response functions and the signals are obtained in the

form of eqs 127-129. The scattering matrix for the coherent
dynamics limit assumes the following form:

Γ(ω)) [1-VG
(0)(ω)]-1VG

(0)(ω)(1-P)[G(0)(ω)]-1 -
P[G(0)(ω)]-1. (386)

In the MFA, this reduces to

ΓMFA(ω))VG
(0)(ω)(1-P)[G(0)(ω)]-1 -P[G(0)(ω)]-1.

(387)

The corresponding scattering matrices of bosons are now
obtained by simply taking P ) 0, which gives eqs 325 and
327.

These commutation relations and the corresponding scat-
tering matrix describe hard-core bosons, Pmn,kl ) δmnδnkδkl,

as well as Wannier excitons (electron-hole pairs) in
semiconductors, where the commutation relations are more
complex.108,114,354

25. Appendix I: Exciton-Scattering in Infinite
Periodic Structures

Molecular crystals are periodic three-dimensional struc-
tures. Some molecular aggregates can be represented as
infinite one-dimensional systems. These include J-aggregates
and cylindrical dye aggregates.5,99,355,356 The quasiparticle
scattering approach can be applied to the infinite systems
by transforming from real space to the momentum (q) space
using the Bloch states.

Consider a periodic D-dimensional system (D ) 1, 2, 3)
of linear extension L (the number of unit cells) made of cells
with M; sites per unit cell. Thus, the number of chro-
mophores is N ) M × LD. We use periodic boundary
conditions to represent the translational invariance. We label
the sites by indices R, and each cell is identified by its
position vector R. For a translationary invariant system, the
intermode coupling Jmm′ ≡ JRR,R′R′ ) JR,R′(R′ - R) is a
function of the distance between the cells R′ - R. Our
starting Hamiltonian is given by eq 57; however, for an
infinite system, each oscillator m in real space is represented
by a pair of indices RR.

The one-exciton states of this system are the Bloch states.
Each eigenstate υ has a pair of quantum numbers qλ, where
λ denotes different Davydov’s sub-bands in the one-exciton
band and the momentum q can have values 2π/(La)(-L/2,
-L/2 + 1, · · · , L/2 - 1) (including 0) in each dimension
where the lattice constant is a. The one-exciton wave
functions are

ψRR
(λ) (q)) 1

√V
exp(-iq ·R)ψj R

(λ)(q), (388)

where V ) (La)D is the volume of the system and ψj R
(λ)(q)

are the eignstates of the cell,

∑
R′

JR,R′(q)ψj R′
(λ)(q))Ωλ(q)ψj R

(λ)(q) (389)

and

JR,R′(q)) 1
V

∑
R

eiq·RJRR,0R′. (390)

Here, JR,R′(q) denotes the M × M matrix with indices R and
R′ where each matrix element depends parametrically on the
vector q.

The one-exciton Green’s function in the one-exciton basis
now reads

GRR,R′R′(τ)) 1
V

∑
qλ

eiq(R′-R)ψj R
(λ)(q)ψj R′

(λ)*(q)Iλ(q, τ) (391)

where

Iλ(q, τ)) θ(τ) exp(-iΩλ(q)τ- γλ(q)τ); (392)

Iλ(q, ω)) 1
ω-Ωλ(q)+ iγλ(q)

. (393)

We next assume a simplified form for the U matrix, Umn,m′n′
) (∆m,n/4)(δmm′δnn′ + δmn′δnm′) (see eq 57), which reflects
the boson scattering, i.e., the energy of the system in the
real space when two molecules m and n are excited is εm +
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εn + ∆mn. Similarly as for quadratic coupling, we use two
indices for the infinite system ∆mm′ ≡ ∆RR,R′R′ ) ∆R,R′(R′ -
R) and assume that it is nonzero only for short distances
smaller than some cutoff parameter |R′ - R| < lc.

The two-exciton Green’s function in real space is

Gm,n;m′,n′(ω) ≡ GRmRm,RnRn;Rm
′ Rm

′ ,Rn
′Rn

′(ω). (394)

To calculate the Green’s function when Rn ) Rm + r1 and
Rn

′ ) Rm
′ + r2 when r1 and r2 are within interaction radius lc,

we define the reduced Green’s function jGRmRm,r1Rn; Rm
′ Rm

′ ,r2Rn
′(ω) )

GRmRm,(Rm + r1)Rn; Rm
′ Rm

′ ,(Rm
′ + r2)Rn

′(ω) and expand it in the one-
exciton basis,

Gj RmRm,r1Rn;Rm
′ Rm

′ ,r2Rn
′(ω))

1

V
2 ∑

qq′
ei (q+q′)(Rm

′ -Rm)-iq′(r1-r2)gRm,Rn;Rm
′ ,Rn

′(q, q′, ω), (395)

where

gRm,Rn;Rm
′ ,Rn

′(q, q′, ω))

∑
λλ′

ψj Rm

(λ)(q)ψj Rn

(λ′)(q′)Iλλ′(q, q′, ω)ψj Rm
′

(λ)*(q)ψj Rn
′

(λ′)*(q′) (396)

is the unit cell’s Green’s function and

Iλλ′(q, q′, ω)) -i

ω+Ωλ(q)+Ωλ′(q
′)- i(γλ(q)+ γλ′(q

′))
.

(397)

Taking into account the translational invariance with
respect to Rm and Rm

′ , we can transform the two-exciton
Green’s function as

Gj r1,Rm,Rn;r2,Rm
′ ,Rn

′(q0, ω))

1
V

∑
Rm,Rm

′
eiRmq0Gj RmRm,r1Rn;Rm

′ Rm
′ ,r2Rn

′(ω) e-iRm
′ q0 )

1
V

∑
q1

ei(q0-q1)(r2-r1)gRm,Rn;Rm
′ ,Rn

′(q1, q0 - q1, ω). (398)

By introducing the M 2R × M 2R matrix Dj ,

Dj r1,Rm,Rn;r2,Rm
′ ,Rn

′(q0, ω)) δr1,r2
δRm,Rm

′ δRn,Rn
′ -

Gj r1,Rm,Rn;r2,Rm
′ ,Rn

′(q0, ω)∆Rm
′ ,Rn

′(r2) (399)

the exciton-scattering matrix may be recast as

Γj r1,Rm,Rn;r2,R′
m,R′

n
(q0, ω))

∆Rm,Rn
(r1)(Dj (q0, ω))r1,Rm,Rn;r2,R′

m,R′
n

-1 . (400)

Since the optical wavelength is typically much longer than
the system size, only Bloch states with zero lattice vector
are optically active. The scattering matrix of these states then
becomes

Γj r1,Rm,Rn;r2,R′
m,R′

n
(ω))

∆Rm,Rn
(r1)(Dj (ω))r1,Rm,Rn;r2,R′

m,R′
n

-1 (401)

with

Dj r1,Rm,Rn;r2,Rm
′ ,Rn

′(ω)) δr1,r2
δRm,Rm

′ δRn,Rn
′ -

Gj r1,Rm,Rn;r2,Rm
′ ,Rn

′(ω)∆Rm
′ ,Rn

′(r2) (402)

and

Gj r1,Rm,Rn;r2,Rm
′ ,Rn

′(ω))

1
V

∑
q1

e-iq1(r2-r1)gRm,Rn;Rm
′ ,Rn

′(q1,-q1, ω). (403)

Transforming this into zero-momentum Bloch state, we get

Γe4e3,e2e1
(ω))

∑
R4R3R2R1

∑
r1,r2

1

V
2
ψj R4

(e4)ψj R3

(e3)ψj R2

(e2)ψj R1

(e1)Γj r1,Rm,Rn;r2,Rm
′ ,Rn

′(ω). (404)

This scattering matrix can be substituted into eqs 127-129,
where the summations over eigenstates are replaced by
summations over zero-momentum Bloch states. For infinite
systems, the index q is a continuous variable and all sums
(1/V)∑q turn to be integrals (1/(2π)D) ∫ dq.

26. Appendix J: Doorway and Window
Wavepackets

The doorway and window functions describe ground-state
absorption and induced absorption/emission properties in the
third-order response. These functions are defined by eq 170
in section 11.2. Expanded in the system eigenstates (see eq
176), we have185

De(t))De
(L)(t)+De

(L)(-t), (405)

We(t))We
(L)(t)-We

(L)(-t), (406)

with

De
(L)(t))-µeg

ν2µeg
ν1Tr[X̂e(t)X̂e

†(0)F̂0], (407)

Here, X̂a
† ) |a〉〈g | is the creation operator of either a

single-exciton eigenstate a ) e or a double-exciton
eigenstate a ) f.

We
(L)(t)) iµeg

ν4µeg
ν3Tr[X̂e

†(0)X̂e(t)F̂e] - (408)

i∑
f

µef
ν4µef

ν3Tr[X̂e
†(t)X̂f(t)X̂f

†(0)X̂e(0)F̂e]. (409)

The bleaching contribution is given by

D0(t)) -∑
e

De
L(t)+De

L(t), (410)

W0(t)) i∑
e

[De
L(t)-De

L(-t)]. (411)

The doorway and window functions may use the cumulant
expansion. This gives

De
L(t))-µeg

ν2µeg
ν1 exp(iεet- gee

* (t)) (412)

Wµ
L(t)) iµµg

ν4 µµg
ν3 exp(-iεµt- gµµ

* (t)+ 2iλµµt)-

i∑
f

µµf
ν4µµf

ν3 exp[-i(εf - εµ)t- gµµ
* (t)- gff(t)+

2gµf(t)+ 2i(λµf - λµµ)t], (413)

where the bath reorganization energy is λνν′, defined by eq
178.

27. Appendix K: Population Transfer with Slow
Bath Fluctuations

In this appendix, we present the correlated contribution
of the population-transfer pathways to the response functions
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described in section 11.3. The density matrix dynamics
represented by the population-transfer diagrams now involves
the characteristic single diagram shown in Figure 35. This
diagram describes correlated propagation during the three
time intervals and is given by the correlation function

Fcbe′e
(I) (t3, t2, t1)) eiωcbt3-iεet1 ×

〈e+iĤe′t2+iĤct3-iĤbt3-iĤe′t2-iĤet1 〉 . (414)
Here, we assumed that the bath dynamics for different

exciton states is correlated; a simpler case is given in ref
24. F(I) is evaluated by the cumulant expansion, and we get

Fcbe′e
(I) (t3, t2, t1)) exp[iωcbt3 - iεet1 -

(τc
-1 + τb

-1)t3 - τe
-1t1 + φjcbe′e(t3, t2, t1)], (415)

where

φjcbe′e(t3, t2, t1))-gee(t1)- gbb(t3)- gcc
* (t3)-

gbe(t1 + t2 + t3)+ gbe(t1 + t2)+ gbe(t2 + t3)+
gce(t1 + t2 + t3)- gce(t1 + t2)- gbe(t2 + t3)+

gcb(t3)+ gbc
* (t3)+ gce(t2)- gbe(t2)+

2iIm[gce′(t2 + t3)- gce′(t2)- gce′(t3)+
gbe′(t2)- gbe′(t2 + t3)+ gbe′(t3)]. (416)

Here, Im denotes the imaginary part. This expression contains
line-shape functions that represent correlations during the
time intervals t1 and t3.

The contribution of population-conserving terms to the
response function now coincides with the coherent descrip-
tion. The contribution of the population-transfer diagram can
be calculated using the cumulant expansion of

RP
(3)(t3, t2, t1))∑

p
∑
νpe′e

(-1)p
Ge′e′,ee

(N) (t2)〈Wbc
pp(t3)Deg

rl (t1)〉
p,

(417)

where p denotes the summation over ia, iiia, iva, and via
pathways: for ia, we have (-1)p ≡ 1, νp ≡ g, c ≡ e′, b ≡ g,
Wpp ≡ Wrl, 〈...〉 p ≡ 〈...〉*; for iiia, we have (-1) p ≡ -1, νp

≡ f, c ≡ f, b ≡ e′, Wpp ≡ Wrr, 〈...〉 p ≡ 〈...〉*; for iva, we
have (-1)p ≡ 1, νp ≡ g, c ≡ g, b ≡ e′, Wpp ≡ Wrl, 〈...〉 p ≡
〈...〉; for via, we have (-1) p ≡ -1, νp ≡ f, c ≡ e′, b ≡ f, Wpp

≡ Wll, 〈...〉p ≡ 〈...〉. We next use µab ) µba and the correlation
function of eq 414. These yield in the following expression

RP
(3)(t3, t2, t1)) (ip-1)3∑

p
∑
νpe′e

(-1)pµcb µνpe′ µeg µeg ×

Ge′e′,ee
(N) (t2)[Fcbe′e

(I) (t3, t2, t1)]
p. (418)

The dynamics of F (I) solely comes from the doorway and

window functions. The phase functions in eq 179 are
obtained from eq 418 by sorting out all Liouville space
pathways.

28. Appendix L: Orientationally Averaged
Molecular Properties

Here, we present expressions for third-order signals in
isotropic ensembles of molecules. As shown in eq 251, the
response function has several linearly independent configura-
tions that differ by the polarization ν and wavevector k
orientations in the laboratory coordinate frame. The complete
expressions for this pulse-polarization configuration for the
linear response are

〈J2
ν2J1

ν1 〉 )ω2{ 〈µ2
ν2µ1

ν1 〉 + 2πi
λ

[〈q2
κ2,ν2µ1

ν1 〉 -〈µ2
ν2q1

κ1,ν1 〉 ]+

i
c∑R [εν2κ2R

〈m2
′′Rµ1

ν1 〉 -εν1κ1R
〈µ2

ν2m1
′′R〉 ]}. (419)

For third-order techniques, we set kI ≡ (u, V, w) ) (-1, 1, 1),
for kII ≡ (u, V, w) ) (1, -1, 1), and for kIII ≡ (u, V, w) )
(1, 1, -1). We then get

〈J4
ν4J3

ν3(w)J2
ν2(V)J1

ν1(u) 〉 ) ω4{〈µ 4
ν4µ3

ν3µ2
ν2µ1

ν1 〉 +
2πi
λ

[〈q4
κ4,ν4µ3

ν3µ2
ν2µ1

ν1 〉 -w〈µ4
ν4q3

κ3,ν3µ2
ν2µ1

ν1 〉 -

V〈µ4
ν4µ3

ν3q2
κ2,ν2µ1

ν1 〉 -u〈µ4
ν4µ3

ν3µ2
ν2q1

κ1,ν1〉 ]+
i
c∑R [εν4κ4R

〈m4
′′Rµ3

ν3µ2
ν2µ1

ν1〉 -wεν3κ3R
〈µ4

ν4m3
′′Rµ2

ν2µ1
ν1 〉 -

Vεν2κ2R
〈µ4

ν4µ3
ν3m2

′′Rµ1
ν1 〉 -uεν1κ1R

〈µ4
ν4µ3

ν3µ2
ν2m1

′′R 〉 ]} , (420)

where εγ	R is the antisymmetric Levi-Civita tensor. These
can be obtained from orientational averaging of tensor
products of arbitrary sets of vectors di and second-rank
tensors ti

〈d2
ν2d1

ν1 〉 ) 1
3

(ν2 · ν1)(d2 · d1), (421)

〈t2
κν2d1

ν1 〉 ) 1
6

(K · (ν2 × ν1)(d1. t2), (422)

〈d2
ν2t1

κν1 〉 )- 1
6

(K · (ν2 × ν1)(d2. t1), (423)

〈d4
ν4d3

ν3d2
ν2d1

ν1 〉 )F{ν}
(4)TM(4)V(4), (424)

〈t4
ν′ν4d3

ν3d2
ν2d1

ν1 〉 )F{ν}
(5)TM(5)V4

(5), (425)

〈d4
ν4t3

ν′ν3d2
ν2d1

ν1 〉 )F{ν}
(5)TM(5)V3

(5), (426)

〈d4
ν4d3

ν3t2
ν′ν2d1

ν1 〉 )F{ν}
(5)TM(5)V2

(5), (427)

〈d4
ν4d3

ν3d2
ν2t1

ν′ν1 〉 )F{ν}
(5)TM(5)V1

(5), (428)

F{ν}
(N) are column vectors that depend on the laboratory-frame

unit vectors ν:

Figure 35. Generalized diagram with population relaxation show-
ing three density matrix propagation intervals. By a proper choice
of the b and c states, this diagram can represent the density matrix
evolution of all diagrams in Figure 7.
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F{ν}
(4) ) ((ν4 · ν3)(ν2 · ν1)

(ν4 · ν2)(ν3 · ν1)
(ν4 · ν1)(ν3 · ν2)

), (429)

F{ν}
(5) ) (ν4 · (ν3 × ν2)(ν1 · ν

′)

ν4 · (ν3 × ν1)(ν2 · ν
′)

ν4 · (ν3 × ν′)(ν2 · ν1)

ν4 · (ν2 × ν1)(ν3 · ν
′)

ν4 · (ν2 × ν′)(ν3 · ν1)

ν4 · (ν1 × ν′)(ν3 · ν2)

), (430)

The matrices M are system-independent:

M(4) ) 1
30( 4 -1 -1

-1 4 -1
-1 -1 4 ), (431)

M(5) ) 1
30( 3 -1 -1 1 1 0

-1 3 -1 -1 0 1
-1 -1 3 0 -1 -1

1 -1 0 3 -1 1
1 0 -1 -1 3 -1
0 1 -1 1 -1 3

) . (432)

Finally, V are column vectors that depend on the system
properties:

V(4) ) ((d4 · d3)(d2 · d1)
(d4 · d2)(d3 · d1)
(d4 · d1)(d3 · d2)

), (433)

V4
(5) ) ( d1 · t4 · (d3 × d2)

d2 · t4 · (d3 × d1)
(d3. t4)(d2 · d1)
d3 · t4 · (d2 × d1)
(d2. t4)(d3 · d1)
(d1. t4)(d3 · d2)

), (434)

V3
(5) ) ( d1 · t3 · (d2 × d4)

d2 · t3 · (d1 × d4)
-(d4. t3)(d2 · d1)

t̄3(d4 · (d2 × d1))
(d4 × d2) · t3 · d1

(d4 × d1) · t3 · d2

), (435)

V2
(5) ) ( d1 · t2 · (d4 × d3)

t̄2(d4 · (d3 × d1))
(d4 × d3) · t2 · d1

d3 · t2 · (d1 × d4)
-(d4. t2)(d3 · d1)

(d4 × d1) · t2 · d3

), (436)

V1
(5) ) ( t1d4 · (d3 × d2)

d2 · t1 · (d4 × d3)
(d4 × d3) · t1 · d2

d3 · t1 · (d4 × d2)
(d4 × d2) · t1 · d3

-(d4. t1)(d3 · d2)
), (437)

where d.t ≡ ∑R3R2R1
εR3R2R1

dR3tR2R1, (t ·d)R ≡ ∑R′ tRR′dR′, (d · t)R
≡ ∑R′ dR′tR′R, and tj ≡ ∑RtRR; consequently, d1 · t ·d2 ≡ ∑R1R2

d1
R1tR1R2d2

R2. By comparing with eqs 419 and 420 and replacing
the vectors d with µ and m and the tensors t with quadrupoles
q, we can calculate the orientationally averaged currents.

For the linear response in the exciton basis, we have J2 )
J1

* and the signal must propagate in the same direction of
the incoming field. We can thus set κ ) z. Orientational
averaging for exciton e gives

〈Je
ν2Je

ν1* 〉 )ω21
3

{δν2ν1
|µe|

2 - i(k · (ν2 × ν1)) ×

[µe. qe - 2me
′′ · µe]}. (438)

The orientational factors given by eqs 424-437 relate the
signals to molecular geometry. The CI terms can be identified
by examining the products of transition dipoles. The electric
transition dipole µ� and coordinate rm are parity-odd, while
the magnetic transition dipole m� and tensors q� are even.
By performing the parity operation on the response functions
and inspecting the parity symmetry, we can connect the
susceptibility with the chirality. All zero-order in wavevector
contributions to odd (linear and cubic) response must be NC,
since they involve either two or four electric transition
dipoles. The corresponding first-order contributions in
wavevectors are CI.
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